Diet-induced weight loss has chronic tissue-specific effects on glucocorticoid metabolism in overweight postmenopausal women.
A Stomby, K Simonyte, C Mellberg, M Ryberg, R H Stimson, C Larsson, B Lindahl, R Andrew, B R Walker, T Olsson
Index: Int. J. Obes. 39 , 814-9, (2015)
Full Text: HTML
Abstract
Tissue-specific glucocorticoid metabolism is altered in obesity, and may increase cardiovascular risk. This dysregulation is normalized by short-term calorie restriction and weight loss, an effect that varies with dietary macronutrient composition. However, tissue-specific glucocorticoid metabolism has not been studied during long-term (>6 months) dietary interventions. Therefore our aim was to test whether long-term dietary interventions, either a paleolithic-type diet (PD) or a diet according to Nordic nutrition recommendations (NNR) could normalize tissue-specific glucocorticoid metabolism in overweight and obese women.Forty-nine overweight/obese postmenopausal women were randomized to a paleolithic diet or a diet according to NNR for 24 months. At baseline, 6 and 24 months anthropometric measurements, insulin sensitivity, excretion of urinary glucocorticoid metabolites in 24-hour collections, conversion of orally administered cortisone to plasma cortisol and transcript levels of 11β hydroxysteroid dehydrogenase type 1 (11βHSD1) in subcutaneous adipose tissue were studied.Both diet groups achieved significant and sustained weight loss. Weight loss with the PD was greater than on NNR diet after 6 months (P<0.001) but similar at 24 months. Urinary measurement of 5α-reductase activity was increased after 24 months in both groups compared with baseline (P<0.001). Subcutaneous adipose tissue 11βHSD1 gene expression decreased at 6 and 24 months in both diet groups (P=0.036). Consistent with increased liver 11βHSD1, conversion of oral cortisone to cortisol increased at 6 months (P=0.023) but was unchanged compared with baseline by 24 months.Long-term weight loss in postmenopausal women has tissue-specific and time-dependent effects on glucocorticoid metabolism. This may alter local-tissue cortisol exposure contributing to improved metabolic function during weight loss.
Related Compounds
Related Articles:
2015-04-22
[J. Ethnopharmacol. 164 , 229-38, (2015)]
2015-02-11
[J. Neurosci. 35(6) , 2384-97, (2015)]
2015-05-01
[J. Virol. 89(10) , 5714-23, (2015)]
2014-07-01
[Autophagy 10(7) , 1241-55, (2014)]
2014-09-01
[Am. J. Pathol. 184(9) , 2403-19, (2014)]