Cholesteryl ester diffusion, location and self-association constraints determine CETP activity with discoidal HDL: excimer probe study.
Alexander D Dergunov, Elena V Shabrova, Gennady E Dobretsov
Index: Arch. Biochem. Biophys. 564 , 211-8, (2014)
Full Text: HTML
Abstract
The transfer of cholesteryl ester by recombinant cholesteryl ester transfer protein (CETP) between reconstituted discoidal high-density lipoprotein (rHDL) was studied. Particles contained apolipoprotein A-I, unsaturated POPC or saturated DPPC and cholesteryl ester as cholesteryl 1-pyrenedecanoate (CPD) or cholesteryl laurate (CL) in donor and acceptor rHDL, respectively. Probe dynamics fulfilled the quenching sphere-of-action model. The cholesteryl ester exchange between donor and acceptor particles was characterized by a heterogeneous kinetics; the fast exchanging CPD pool was much higher in a case of POPC compared to DPPC complexes. Probe fraction accessible to CETP increased with temperature, suggesting a more homogeneous probe distribution. Noncompetitive inhibition of probe transfer by acceptor particles was observed. The values of Vmax (0.063μMmin(-1)) and catalytic rate constant kcat (0.42s(-1)) together with a similarity of Km (0.9μM CPD) and KI (2.8μM CL) values for POPC-containing rHDL suggest the efficient cholesteryl ester transfer between nascent HDL with unsaturated phosphatidylcholine in vivo. The phospholipid matrix in discoidal HDL may underlie CETP activity through the self-association, diffusivity and location of cholesteryl ester in the bilayer, the accessibility of cholesteryl ester to cholesterol-binding site in apoA-I structure and the binding of cholesteryl ester, positionable by apoA-I, to CETP.Copyright © 2014 Elsevier Inc. All rights reserved.
Related Compounds
Related Articles:
2015-04-22
[J. Ethnopharmacol. 164 , 229-38, (2015)]
2015-02-11
[J. Neurosci. 35(6) , 2384-97, (2015)]
2015-05-01
[J. Virol. 89(10) , 5714-23, (2015)]
2014-07-01
[Autophagy 10(7) , 1241-55, (2014)]
2014-09-01
[Am. J. Pathol. 184(9) , 2403-19, (2014)]