Methods in Cell Biology 2008-01-01

Chapter 19 A Protocol for Isolation and Visualization of Yeast Nuclei by Scanning Electron Microscopy

Stephen Murray, Elena Kiseleva

Index: Methods Cell Biol. 88 , 367-87, (2008)

Full Text: HTML

Abstract

This article describes a protocol that details methods for the isolation of yeast nuclei from budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe), immunogold labelling of proteins, and visualization by Field Emission Scanning Electron Microscopy (FESEM). This involves the removal of the yeast cell wall and isolation of the nucleus from within, followed by subsequent processing for high resolution microscopy. The nuclear isolation step is performed by enzymatic treatment of yeast cells to rupture the cell wall and generate spheroplasts (cells that have partially lost their cell wall and their characteristic shape), followed by isolation of nuclei by centrifugation. This protocol has been optimized for the visualization of the yeast nuclear envelope (NE), nuclear pore complexes (NPCs), and associated cytoskeletal structures. Samples, once processed for FESEM, can be stored under vacuum for weeks, allowing considerable time for image acquisition.


Related Compounds

  • Gelatin
  • LYTICASE

Related Articles:

Unique Features of Human Protein Arginine Methyltransferase 9 (PRMT9) and Its Substrate RNA Splicing Factor SF3B2.

2015-07-03

[J. Biol. Chem. 290 , 16723-43, (2015)]

Fluorometric immunocapture assay for the specific measurement of matrix metalloproteinase-9 activity in biological samples: application to brain and plasma from rats with ischemic stroke.

2013-01-01

[Mol. Brain 6 , 14, (2013)]

Relating the variation of secondary structure of gelatin at fish oil-water interface to adsorption kinetics, dynamic interfacial tension and emulsion stability.

2014-01-15

[Food Chem. 143 , 484-91, (2014)]

Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by a combined freeze-drying/leaching method.

2013-10-01

[Mater. Sci. Eng. C. Mater. Biol. Appl. 33(7) , 3958-67, (2013)]

In vitro growth of bioactive nanostructured apatites via agar-gelatin hybrid hydrogel.

2013-12-01

[J. Biomed. Nanotechnol. 9(12) , 1972-83, (2013)]

More Articles...