Identification and origin of N-linked β-D-N-acetylglucosamine monosaccharide modifications on Arabidopsis proteins.
Young-Cheon Kim, Neal Jahren, Matthew D Stone, Namrata D Udeshi, Todd W Markowski, Bruce A Witthuhn, Jeffrey Shabanowitz, Donald F Hunt, Neil E Olszewski
Index: Plant Physiol. 161(1) , 455-64, (2013)
Full Text: HTML
Abstract
Many plant proteins are modified with N-linked oligosaccharides at asparagine-X-serine/threonine sites during transit through the endoplasmic reticulum and the Golgi. We have identified a number of Arabidopsis (Arabidopsis thaliana) proteins with modifications consisting of an N-linked N-acetyl-D-glucosamine monosaccharide (N-GlcNAc). Electron transfer dissociation mass spectrometry analysis of peptides bearing this modification mapped the modification to asparagine-X-serine/threonine sites on proteins that are predicted to transit through the endoplasmic reticulum and Golgi. A mass labeling method was developed and used to study N-GlcNAc modification of two thioglucoside glucohydrolases (myrosinases), TGG1 and TGG2 (for thioglucoside glucohydrolase). These myrosinases are also modified with high-mannose (Man)-type glycans. We found that N-GlcNAc and high-Man-type glycans can occur at the same site. It has been hypothesized that N-GlcNAc modifications are generated when endo-β-N-acetylglucosaminidase (ENGase) cleaves N-linked glycans. We examined the effects of mutations affecting the two known Arabidopsis ENGases on N-GlcNAc modification of myrosinase and found that modification of TGG2 was greatly reduced in one of the single mutants and absent in the double mutant. Surprisingly, N-GlcNAc modification of TGG1 was not affected in any of the mutants. These data support the hypothesis that ENGases hydrolyze high-Man glycans to produce some of the N-GlcNAc modifications but also suggest that some N-GlcNAc modifications are generated by another mechanism. Since N-GlcNAc modification was detected at only one site on each myrosinase, the production of the N-GlcNAc modification may be regulated.
Related Compounds
Related Articles:
2015-03-01
[Int. J. Biochem. Cell Biol. 60 , 119-29, (2015)]
2015-01-15
[Biochem. J. 465(2) , 305-14, (2015)]
2012-07-16
[J. Proteomics 75(13) , 4038-49, (2012)]
2011-01-01
[PLoS ONE 6(8) , e23838, (2011)]
2011-12-01
[FEMS Microbiol. Lett. 325(2) , 123-9, (2011)]