Biochemical Journal 2012-09-01

A key regulator of cholesterol homoeostasis, SREBP-2, can be targeted in prostate cancer cells with natural products.

James R Krycer, Lisa Phan, Andrew J Brown

Index: Biochem. J. 446(2) , 191-201, (2012)

Full Text: HTML

Abstract

There is growing evidence showing that prostate cancer cells have perturbed cholesterol homoeostasis, accumulating cholesterol to promote cell growth. Consequently, cholesterol-lowering drugs such as statins are being evaluated in prostate cancer treatment. Furthermore, natural products such as betulin (from birch tree bark) and tocotrienol (a minor form of vitamin E) have been shown to lower cholesterol levels. Using these drugs and oxysterols, we have determined which aspects of cholesterol homoeostasis should be targeted in prostate cancer, e.g. cellular cholesterol levels are increased by the transcription factor SREBP-2 (sterol-regulatory-element-binding protein isoform 2), whereas LXR (liver X receptor) promotes cholesterol efflux. Whereas betulin exerted non-specific effects on cell viability, tocotrienols produced a strong direct correlation between SREBP-2 activity and cell viability. Mechanistically, tocotrienols lowered SREBP-2 activity by degrading mature SREBP-2 independently of the proteasome. In contrast, no correlation was seen between LXR activity and cell viability, implying that SREBP-2 is a better target than LXR for prostate cancer treatment. Lastly, androgen-dependent and -independent LNCaP cells were both sensitive to tocotrienols. Overall, this suggests that tocotrienols and other drugs targeting the SREBP-2 pathway are a potential therapeutic option for prostate cancer.


Related Compounds

  • Gamma-Tocotrienol
  • Betulin
  • δ-Tocotrienol
  • α-tocotrienol

Related Articles:

Plastochromanol-8: fifty years of research.

2014-12-01

[Phytochemistry 108 , 9-16, (2014)]

Tocotrienols promote apoptosis in human breast cancer cells by inducing poly(ADP-ribose) polymerase cleavage and inhibiting nuclear factor kappa-B activity.

2013-04-01

[Cell Prolif. 46(2) , 203-13, (2013)]

Tissue distribution of vitamin E metabolites in rats after oral administration of tocopherol or tocotrienol.

2012-02-01

[J. Nutr. Sci. Vitaminol. 57(5) , 326-32, (2011)]

δ- and γ-tocotrienols induce classical ultrastructural apoptotic changes in human T lymphoblastic leukemic cells.

2012-06-01

[Microsc. Microanal. 18(3) , 462-9, (2012)]

Tocotrienols prevent hydrogen peroxide-induced axon and dendrite degeneration in cerebellar granule cells.

2012-02-01

[Free Radic. Res. 46(2) , 184-93, (2012)]

More Articles...