Science of The Total Environment 2011-04-15

Measurements and modeling of pesticide persistence in soil at the catchment scale.

A Ghafoor, N J Jarvis, T Thierfelder, J Stenström

Index: Sci. Total Environ. 409(10) , 1900-8, (2011)

Full Text: HTML

Abstract

Degradation of pesticides in soils is both spatially variable and also one of the most sensitive factors determining losses to surface water and groundwater. To date, no general guidance is available on suitable approaches for dealing with spatial variation in pesticide degradation in catchment or regional scale modeling applications. The purpose of the study was therefore to study the influence of various soil physical, chemical and microbiological characteristics on pesticide persistence in the contrasting cultivated soils found in a small (13 km(2)) agricultural catchment in Sweden and to develop and test a simple model approach that could support catchment scale modeling. Persistence of bentazone, glyphosate and isoproturon was investigated in laboratory incubation experiments. Degradation rate constants were highly variable with coefficients of variation ranging between 42 and 64% for the three herbicides. Multiple linear regression analysis and Mallows Cp statistic were employed to select the best set of independent parameters accounting for the variation in degradation. Soil pH and the proportion of active microorganisms (r) together explained 69% of the variation in the bentazone degradation rate constant; the Freundlich sorption co-efficient (K(f)) and soil laccase activity together explained 88% of the variation in degradation rate of glyphosate, while soil pH was a significant predictor (p<0.05) for isoproturon persistence. However, correlations between many potential predictor variables made clear interpretations of the statistical analysis difficult. Multiplicative models based on two predictors chosen 'a priori', one accounting for microbial activity (e.g. microbial respiration, laccase activity or the surrogate variable soil organic carbon, SOC) and one accounting for the effects of sorption on bioavailability, showed promise to support predictions of degradation for large-scale modeling applications, explaining up to 50% of the variation in herbicide persistence.Copyright © 2011 Elsevier B.V. All rights reserved.


Related Compounds

  • Isoproturon
  • Bentazon

Related Articles:

Environmental friendly method for urban wastewater monitoring of micropollutants defined in the Directive 2013/39/EU and Decision 2015/495/EU.

2015-10-30

[J. Chromatogr. A. 1418 , 140-9, (2015)]

Simultaneous extraction and determination of various pesticides in environmental waters.

2014-12-01

[J. Sep. Sci. 37(24) , 3699-705, (2014)]

Multiresidue method for the determination of 13 pesticides in three environmental matrices: water, sediments and fish muscle.

2011-09-15

[Talanta 85(3) , 1500-7, (2011)]

Influence of pesticide use in fruit orchards during blooming on honeybee mortality in 4 experimental apiaries.

2016-01-15

[Sci. Total Environ. 541 , 33-41, (2015)]

Pesticide leaching from two Swedish topsoils of contrasting texture amended with biochar.

2013-04-01

[J. Contam. Hydrol. 147 , 73-81, (2013)]

More Articles...