Endocrinology 2011-12-01

A role for metalloendopeptidases in the breakdown of the gut hormone, PYY 3-36.

Melisande L Addison, James S Minnion, Joy C Shillito, Keisuke Suzuki, Tricia M Tan, Benjamin C T Field, Natacha Germain-Zito, Christoph Becker-Pauly, Mohammad A Ghatei, Stephen R Bloom, Kevin G Murphy

Index: Endocrinology 152 , 4630-40, (2011)

Full Text: HTML

Abstract

Peptide YY(3-36) (PYY(3-36)) is a gut hormone that acts on Y2 receptors to reduce appetite. Obese humans are sensitive to the anorectic effects of PYY(3-36) and display a blunted postprandial rise in PYY(3-36). Bariatric surgery results in increased circulating PYY-immunoreactivity, which appears to play a role in postoperative weight loss. The utility of PYY(3-36) as an antiobesity treatment is limited by its short circulating half-life. Insight into the mechanisms by which PYY(3-36) is degraded may aid design of long-acting PYY(3-36) analogues or enzyme inhibitor therapies. We aimed to investigate the role of metalloendopeptidases in PYY(3-36) degradation and determine whether modulation of these enzymes enhanced PYY(3-36) plasma levels and bioactivity in vivo. Degradation and resultant cleavage products of PYY(3-36) were characterized after incubation with neprilysin and meprin β and with a kidney brush border preparation in vitro. Specific metalloendopeptidase inhibitors were coadministered with PYY(3-36) to mice and subsequent PYY(3-36) plasma levels and bioactivity determined. Meprin β cleaves PYY(3-36) at multiple conserved acidic sites. Blocking the actions of meprin β prevents the degradative effect of kidney brush borders on PYY(3-36). In mice, pretreatment with actinonin significantly prolonged the anorectic effect of PYY(3-36) and maintained higher PYY(3-36) plasma levels than treatment with PYY(3-36) alone. These studies suggest that inhibiting the degradation of PYY(3-36) using specific inhibitor therapies and/or the design of analogues resistant to cleavage by meprins may be useful to antiobesity therapeutics.


Related Compounds

  • Tiopronin
  • ACTINONIN

Related Articles:

Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.

2010-01-01

[Chem. Res. Toxicol. 23 , 171-83, (2010)]

The Japanese toxicogenomics project: application of toxicogenomics.

2010-02-01

[Mol. Nutr. Food. Res. 54 , 218-27, (2010)]

Intermittent insulin treatment mimics ischemic postconditioning via MitoKATP channels, ROS, and RISK.

2015-01-01

[Scand. Cardiovasc. J. 49 , 270-9, (2015)]

Development of a phospholipidosis database and predictive quantitative structure-activity relationship (QSAR) models.

2008-01-01

[Toxicol. Mech. Methods 18 , 217-27, (2008)]

Glutathione-mediated drug release from Tiopronin-conjugated gold nanoparticles for acute liver injury therapy.

2013-03-25

[Int. J. Pharm. 446(1-2) , 112-8, (2013)]

More Articles...