Nanotechnology 2013-02-01

Flexible CuS nanotubes-ITO film Schottky junction solar cells with enhanced light harvesting by using an Ag mirror.

Chunyan Wu, Zihan Zhang, Yiliang Wu, Peng Lv, Biao Nie, Linbao Luo, Li Wang, Jigang Hu, Jiansheng Jie

Index: Nanotechnology 24(4) , 045402, (2013)

Full Text: HTML

Abstract

Here we report the fabrication of a novel photovoltaic device based on CuS nanotubes (CuSNTs) and indium tin oxide (ITO) Schottky junctions. Large-quantity synthesis of CuSNTs was accomplished via a solution-based sacrificial template method under moderate conditions, while ITO Schottky contacts were fabricated via micro-fabrication and pulsed laser deposition (PLD). Upon light illumination, CuSNTs-ITO Schottky junctions exhibited pronounced photovoltaic behavior, giving rise to a power conversion efficiency of 1.17% on a conventional SiO(2)/Si substrate. Furthermore, by utilizing PET as the substrate, transparent and flexible CuSNTs-ITO solar cells were constructed and showed performance close to their device counterparts on a rigid substrate. Notably, it was found that the flexible devices were robust against tensile strain and could stand a bending angle up to ∼95°. To enhance the light absorption of the devices, an Ag mirror layer was deposited on the rear side of the PET substrate so as to allow multiple reflection and absorption of the incident light. As a result, the flexible devices showed a substantial performance improvement, yielding an efficiency of ∼2%. Our results demonstrate that low-cost and environmentally friendly CuSNTs-ITO solar cells are promising candidates for new-generation photovoltaic devices.


Related Compounds

  • Copper sulfide (C...

Related Articles:

Enzyme-responsive copper sulphide nanoparticles for combined photoacoustic imaging, tumor-selective chemotherapy and photothermal therapy.

2013-04-28

[Chem. Commun. (Camb.) 49(33) , 3455-7, (2013)]

Water soluble sodium sulfate nanorods as a versatile template for the designing of copper sulfide nanotubes.

2014-06-01

[J. Nanosci. Nanotechnol. 14(6) , 4455-61, (2014)]

Copper uptake by DMT1: a compensatory mechanism for CTR1 deficiency in human umbilical vein endothelial cells.

2015-08-01

[Metallomics 7 , 1285-9, (2015)]

Understanding the formation of CuS concave superstructures with peroxidase-like activity.

2012-06-07

[Nanoscale 4(11) , 3501-6, (2012)]

Assembly of shape-controlled nanocrystals by depletion attraction.

2011-01-07

[Chem. Commun. (Camb.) 47(1) , 203-5, (2011)]

More Articles...