PKC-dependent phosphorylation of p27 at T198 contributes to p27 stabilization and cell cycle arrest.
Fernanda De Vita, Miriam Riccardi, Donatella Malanga, Marianna Scrima, Carmela De Marco, Giuseppe Viglietto
Index: Cell Cycle 11(8) , 1583-92, (2012)
Full Text: HTML
Abstract
In this manuscript, we present experimental evidence that PKCs phosphorylate p27 at T198 in vitro and in vivo, resulting in p27 stabilization and cell cycle arrest in MCF-7 and HeLa cells. Our findings indicate that (1) recombinant PKCα, βII, δ, η and θ isoforms phosphorylate, in in vitro kinase assays, wild-type recombinant p27 protein expressed in E. coli and wild-type p27 protein immunoprecpitated from transfected HEK-293 cells but not the T198A mutant, (2) adoptive expressed PKCα and δ phosphorylate both transfected and endogenous p27 at T198 in HEK-293 cells, (3) T198 phosphorylation of transfected and endogenous p27 is increased by PKC activators [Phorbol 12-myristate 13-acetate (PMA)] and suppressed by PKC inhibitors (Rottlerin A, G06976, Calphostin C), (4) in parallel with increased T198 phosphorylation, PMA induces stabilization of p27 protein in HeLa cells, whereas PKC inhibitors induce a decrease in p27 stability and, finally, (5) PMA-induced p27 upregulation is necessary for growth arrest of HeLa and MCF-7 cells induced by PKC activation by PMA. Overall, these results suggest that PKC-dependent upregulation of p27 induced by its phosphorylation at T198 represents a mechanism that mediates growth arrest promoted by PMA and provide novel insights on the ability of different PKC isoforms to play a role in controlling cell cycle progression.
Related Compounds
Related Articles:
2013-10-25
[J. Biol. Chem. 288(43) , 31370-85, (2013)]
2012-11-09
[Circ. Res. 111(11) , 1446-58, (2012)]
2012-03-15
[Am. J. Physiol. Heart Circ. Physiol. 302(6) , H1274-84, (2012)]
2013-01-01
[Mol. Cell Biochem. 372(1-2) , 181-90, (2013)]
2013-01-01
[Mol. Cells 35(1) , 79-86, (2013)]