Molecular Pharmacology 2010-10-01

Mutagenesis of nucleophilic residues near the orthosteric binding pocket of M1 and M2 muscarinic receptors: effect on the binding of nitrogen mustard analogs of acetylcholine and McN-A-343.

Hinako Suga, Gregory W Sawyer, Frederick J Ehlert

Index: Mol. Pharmacol. 78(4) , 745-55, (2010)

Full Text: HTML

Abstract

Investigating how a test drug alters the reaction of a site-directed electrophile with a receptor is a powerful method for determining whether the drug acts competitively or allosterically, provided that the binding site of the electrophile is known. In this study, therefore, we mutated nucleophilic residues near and within the orthosteric pockets of M(1) and M(2) muscarinic receptors to identify where acetylcholine mustard and 4-[(2-bromoethyl)methyl-amino]-2-butynyl-N-(3-chlorophenyl)carbamate (BR384) bind covalently. BR384 is the nitrogen mustard analog of [4-[[N-(3-chlorophenyl)carbamoyl]oxy]-2-butynyl]trimethylammonium chloride (McN-A-343). Mutation of the highly conserved aspartic acid in M(1) (Asp105) and M(2) (Asp103) receptors to asparagine largely prevented receptor alkylation by acetylcholine mustard, although modest alkylation still occurred at M(2) D103N at high concentrations of the mustard. Receptor alkylation by BR384 was also greatly inhibited in the M(1) D105N mutant, but some alkylation still occurred at high concentrations of the compound. In contrast, BR384 rapidly alkylated the M(2) D103N mutant. Its affinity was reduced to one tenth, however. The alkylation of M(2) D103N by BR384 was competitively inhibited by N-methylscopolamine and allosterically inhibited by gallamine. Mutation of a variety of other nucleophilic residues, some in combination with D103N, had little effect on M(2) receptor alkylation by BR384. Our results suggest that BR384 alkylates at least one residue other than the conserved aspartic acid at the ligand-binding site of M(1) and M(2) receptors. This additional residue seems to be located within or near the orthosteric-binding pocket and is not part of the allosteric site for gallamine.


Related Compounds

  • McN-A 343

Related Articles:

Central muscarinic cholinergic activation alters interaction between splenic dendritic cell and CD4+CD25- T cells in experimental colitis.

2014-01-01

[PLoS ONE 9(10) , e109272, (2014)]

Functional activation of G-proteins coupled with muscarinic acetylcholine receptors in rat brain membranes.

2014-01-01

[J. Pharmacol. Sci. 125(2) , 157-68, (2014)]

Investigating the interaction of McN-A-343 with the M2 muscarinic receptor using its nitrogen mustard derivative.

2010-04-01

[Biochem. Pharmacol. 79(7) , 1025-35, (2010)]

Investigating the interaction of McN-A-343 with the M muscarinic receptor using its nitrogen mustard derivative and ACh mustard.

2010-07-01

[Br. J. Pharmacol. 160(6) , 1534-49, (2010)]

Negative crosstalk between M1 and M2 muscarinic autoreceptors involves endogenous adenosine activating A1 receptors at the rat motor endplate.

2009-08-14

[Neurosci. Lett. 459 , 127-131, (2009)]

More Articles...