BMC Medical Genetics 2011-01-01

Folate network genetic variation, plasma homocysteine, and global genomic methylation content: a genetic association study.

Susan M Wernimont, Andrew G Clark, Patrick J Stover, Martin T Wells, Augusto A Litonjua, Scott T Weiss, J Michael Gaziano, Katherine L Tucker, Andrea Baccarelli, Joel Schwartz, Valentina Bollati, Patricia A Cassano

Index: BMC Med. Genet. 12 , 150, (2011)

Full Text: HTML

Abstract

Sequence variants in genes functioning in folate-mediated one-carbon metabolism are hypothesized to lead to changes in levels of homocysteine and DNA methylation, which, in turn, are associated with risk of cardiovascular disease.330 SNPs in 52 genes were studied in relation to plasma homocysteine and global genomic DNA methylation. SNPs were selected based on functional effects and gene coverage, and assays were completed on the Illumina Goldengate platform. Age-, smoking-, and nutrient-adjusted genotype--phenotype associations were estimated in regression models.Using a nominal P ≤ 0.005 threshold for statistical significance, 20 SNPs were associated with plasma homocysteine, 8 with Alu methylation, and 1 with LINE-1 methylation. Using a more stringent false discovery rate threshold, SNPs in FTCD, SLC19A1, and SLC19A3 genes remained associated with plasma homocysteine. Gene by vitamin B-6 interactions were identified for both Alu and LINE-1 methylation, and epistatic interactions with the MTHFR rs1801133 SNP were identified for the plasma homocysteine phenotype. Pleiotropy involving the MTHFD1L and SARDH genes for both plasma homocysteine and Alu methylation phenotypes was identified.No single gene was associated with all three phenotypes, and the set of the most statistically significant SNPs predictive of homocysteine or Alu or LINE-1 methylation was unique to each phenotype. Genetic variation in folate-mediated one-carbon metabolism, other than the well-known effects of the MTHFR c.665C>T (known as c.677 C>T, rs1801133, p.Ala222Val), is predictive of cardiovascular disease biomarkers.


Related Compounds

  • SARCOSINE DE...

Related Articles:

Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression.

2009-02-12

[Nature 457(7231) , 910-4, (2009)]

Enzymatic activity and stability of D-fructose dehydrogenase and sarcosine dehydrogenase immobilized onto giant vesicles.

2003-11-20

[Biotechnol. Bioeng. 84(4) , 415-23, (2003)]

Sarcosine metabolism in Haemonchus contortus and Teladorsagia circumcincta.

2013-05-01

[Exp. Parasitol. 134(1) , 1-6, (2013)]

[Sarcosine dehydrogenase deficiency].

[Ryōikibetsu shōkōgun shirīzu (18 Pt 1) , 221-3, (1998)]

TMEFF2 and SARDH cooperate to modulate one-carbon metabolism and invasion of prostate cancer cells.

2013-10-01

[Prostate 73(14) , 1561-75, (2013)]

More Articles...