Studies on thermal reactivity of beta-(1,2-allenyl)butenolides and 2-allyl-3-allenylcyclohex-2-enones.
Zhenhua Gu, Shengming Ma
Index: Chemistry 14(8) , 2453-64, (2008)
Full Text: HTML
Abstract
A series of thermal pericyclic reactions of beta-allenylfuranones have been studied. It was observed that beta-allenylfuranones would undergo 1,5-hydrogen shift to afford a new type of trienes upon heating. Due to their high reactivity, these trienes would undergo subsequent pericyclic reactions based on the nature of the substituent group R: When R is an alkyl group, the intermediate 4a or 4b would undergo a further 1,7-hydrogen shift to afford a more stable conjugated triene 3; with R being phenyl or cyclopropyl group, the 1,7-hydrogen shift was inhibited and the 4-type conjugated triene would form a six-membered ring 5 via 6 pi-electrocyclization. Interestingly, introducing another C=C double bond into the triene intermediate (R = CH=CH2, the 18-type intermediate would undergo 8 pi-electrocyclization reaction to form an eight-membered ring. Such a transformation was also observed with 2-allyl-3-allenylcyclohex-2-enones. The deuterium-labeling mechanistic studies show that the alkyl groups at the allenyl moiety of 1 participated in the isomerization process via 1,7-hydrogen shifts between 18 A, 20 A, and 29 A.
Related Compounds
Related Articles:
2008-09-01
[Toxicol. In Vitro 22(6) , 1511-9, (2008)]
2008-06-20
[Maturitas 60(2) , 153-7, (2008)]
1998-08-01
[Mol. Endocrinol. 12(8) , 1120-32, (1998)]
2006-06-07
[J. Pharm. Biomed. Anal. 41(3) , 1029-36, (2006)]
2005-01-01
[Steroids 70(1) , 37-45, (2005)]