Xenobiotica 2011-12-01

Flavin monooxygenases, FMO1 and FMO3, not cytochrome P450 isoenzymes, contribute to metabolism of anti-tumour triazoloacridinone, C-1305, in liver microsomes and HepG2 cells.

Barbara Fedejko-Kap, Magdalena Niemira, Anna Radominska-Pandya, Zofia Mazerska

Index: Xenobiotica 41(12) , 1044-55, (2011)

Full Text: HTML

Abstract

5-Dimethylaminopropylamino-8-hydroxytriazoloacridinone, C-1305, being the close structural analogue of the clinically tested imidazoacridinone anti-tumour agent, C-1311, expressed high activity against experimental tumours and is expected to have more advantageous pharmacological properties than C-1311. The aim of this study was to elucidate the role of selected liver enzymes in the metabolism of C-1305. We demonstrated that the studied triazoloacridinone was transformed with rat and human liver microsomes, HepG2 hepatoma cells and with human recombinant flavin-containing monooxygenases FMO1, FMO3 but not with CYPs. Furthermore, this compound was an effective inhibitor of CYP1A2 and CYP3A4. The product of FMO catalysed metabolism was shown to be identical to the main metabolite from liver microsomes and HepG2 cells. It was identified as an N-oxide derivative and, under hypoxia, it underwent retroreduction back to C-1305, what was extremely effective with participation of CYP3A4. In summary, this work revealed that the involvement of the P450 enzymatic system in microsomal and cellular metabolism of C-1305 was negligible, whereas this agent was an inhibitor of CYP1A2 and CYP3A4. In contrast, FMO1 and FMO3 were crucial for metabolism of C-1305 by liver microsomes and in HepG2 cells, which makes C-1305 an attractive potent anti-tumour agent.


Related Compounds

  • C-1311

Related Articles:

DNA-damaging imidazoacridinone C-1311 induces autophagy followed by irreversible growth arrest and senescence in human lung cancer cells.

2013-09-01

[J. Pharmacol. Exp. Ther. 346(3) , 393-405, (2013)]

Metabolic transformation of antitumor acridinone C-1305 but not C-1311 via selective cellular expression of UGT1A10 increases cytotoxic response: implications for clinical use.

2013-02-01

[Drug Metab. Dispos. 41(2) , 414-21, (2013)]

Development and validation of an LC-UV method for the quantification and purity determination of the novel anticancer agent C1311 and its pharmaceutical dosage form.

2005-09-01

[J. Pharm. Biomed. Anal. 39(1-2) , 46-53, (2005)]

Thermoresponsive polymeric gel as a medium for examining interactions between dsDNA and an anticancer drug.

2008-10-01

[Anal. Bioanal. Chem 392(3) , 463-9, (2008)]

Anticancer imidazoacridinone C-1311 inhibits hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) and angiogenesis.

2011-10-01

[Cancer Biol. Ther. 12(7) , 586-97, (2011)]

More Articles...