Characterization of RCI-1, a chloroplastic rice lipoxygenase whose synthesis is induced by chemical plant resistance activators.
U Schaffrath, F Zabbai, R Dudler
Index: Eur. J. Biochem. 267(19) , 5935-42, (2000)
Full Text: HTML
Abstract
A full-length lipoxygenase cDNA (RCI-1) has been cloned from rice (Oryza sativa) whose corresponding transcripts accumulate in response to treatment of the plants with chemical inducers of acquired resistance such as benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH), 2,6-dichloroisonicotinic acid (INA), and probenazole. In contrast, RCI-1 transcript levels did not increase after inoculation with compatible and incompatible races of the rice blast fungus Magnaporthe grisea and the nonhost pathogen Pseudomonas syringae pv. syringae. RCI-1 transcript levels also increased after exogenous application of jasmonic acid, but not upon wounding. Dose-response and time course experiments revealed a similar pattern of transcript accumulation and lipoxygenase activity in BTH-treated rice leaves. Enzymatic analysis of recombinant RCI-1 protein produced in Escherichia coli revealed that 13-hydroperoxy-octadecanoic acids were the predominant reaction products when either linoleic or linolenic acid used as a substrate. The RCI-1 sequence features a putative chloroplast targeting sequence at its N-terminus. Indeed, a protein consisting of the putative chloroplast transit peptide fused to green fluorescent protein was exclusively localized in chloroplasts, indicating that RCI-1 is a chloroplastic enzyme.
Related Compounds
Related Articles:
2001-01-01
[Biosci. Biotechnol. Biochem. 65(1) , 205-8, (2001)]
2009-01-01
[Curr. Issues Mol. Biol. 11 Suppl 1 , i85-94, (2009)]
2009-01-01
[Protein Pept. Lett. 16(9) , 1041-52, (2009)]
2009-12-01
[Contact Dermatitis 61(6) , 350-1, (2009)]
2013-01-01
[Int. J. Mol. Sci. 14 , 19484-93, (2013)]