Journal of Physical Chemistry B 2010-04-29

Cross-linked bioreducible layer-by-layer films for increased cell adhesion and transgene expression.

Jenifer Blacklock, Torsten K Sievers, Hitesh Handa, Ye-Zi You, David Oupický, Guangzhao Mao, Helmuth Möhwald

Index: J. Phys. Chem. B 114(16) , 5283-91, (2010)

Full Text: HTML

Abstract

The effect of cross-linking layer-by-layer (LbL) films consisting of bioreducible poly(2-dimethylaminoethyl methacrylate) (rPDMAEMA) and DNA is examined with regard to rigidity, biodegradability, cell adhesion, and transfection activity using 1,5-diiodopentane (DIP) cross-linker. DIP chemically reacts with the tertiary amines of rPDMAEMA, altering the chemical composition of these LbL films. The result is a change in surface morphology, film swelling behavior, and film rigidity, measured with AFM and ellipsometry. It is found that the apparent Young's modulus is increased more than 4 times its original value upon cross-linking. Cross-linking mass is additionally confirmed with a quartz crystal microbalance with dissipation (QCM-D). Comprehensive analyses of these experimental values were investigated to calculate the degree of cross-linking using the rubber elasticity theory and the Flory-Rehner theory. Additionally, the Flory-Huggins parameter, chi, was calculated. Good agreement in the two methods yields a cross-linking density of approximately 0.82 mmol/cm(3). The Flory-Huggins parameter increased upon cross-linking from 1.07 to 1.2, indicating increased hydrophobicity of the network and formation of bulk water droplets within the films. In addition, the effects of cross-linking on film disassembly by 1,4-dithiothreitol (DTT) are found to be insignificant despite the alteration in film rigidity. Mouse fibroblast cells and smooth muscle cells are used to study the effect of cross-linking on cell adhesion and cell transfection activity. In vitro transfection activity up to seven days is quantified using secreted alkaline phosphatase (SEAP) DNA. Film cross-linking is found to enhance cell adhesion and prolong the duration of cellular transfection. These results contribute to the development of bioreducible polymer coatings for localized gene delivery.


Related Compounds

  • 1,5-Diiodopentane

Related Articles:

Reactions of a-lithio (aminocarbene) tungsten anions with diiodoalkanes: Synthesis of (µ-bis (aminocarbene)) ditungsten complexes. Macomber DW and Madhukar P.

[J. Organomet. Chem. 433(3) , 279-85, (1992)]

Electrochemical Reduction of 1, 5-Dihalopentanes at Carbon Cathodes in Dimethylformamide. Pritts WA and Peters DG.

[J. Electrochem. Soc. 141(12) , 3318-3324, (1994)]

More Articles...