Sphingosine-1-Phosphate Is a Crucial Signal for Migration of Retina Müller Glial Cells.
María V Simón, Facundo H Prado Spalm, Luis E Politi, Nora P Rotstein
Index: Invest. Ophthalmol. Vis. Sci. 56 , 5808-15, (2015)
Full Text: HTML
Abstract
Migration of Müller glial cells is enhanced in proliferative retinopathies, but the mechanisms involved are ill defined. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid synthesized by sphingosine kinase (SphK), which promotes proliferation, migration, and inflammation, acting as an intracellular mediator and activating a family of membrane receptors (S1PRs). We investigated whether S1P regulated glial migration.Müller glial cell cultures from rat retinas were supplemented with 5 μM S1P, and migration was evaluated by scratch-wound assays. Cultures were treated with SphK inhibitor 2 (SphKI 2), a SphK1 inhibitor, or with W146 and BML-241, S1P1 and S1P3 antagonists, respectively, to investigate whether Müller glial cells synthesized S1P and S1P-activated S1PRs to stimulate migration. The effects of LY294002, U0126, and SB203580, which are phosphatidylinositol-3 kinase (PI3K), extracellular signal regulated kinase/mitogen-activated protein kinase (ERK/MAPK), and p38 MAPK inhibitors, respectively, on glial migration were determined.Sphingosine-1-phosphate addition prompted the formation of lamellipodia and enhanced glial migration. SphKI 2 almost completely prevented glial migration in controls; BML-241 inhibited this migration both in controls and in S1P-supplemented cultures, whereas W146 had no significant effect. Pretreatment with LY294002 and U0126 abrogated glial migration; SB203580 decreased it partially, although not significantly.Our results suggest that Müller glial cells synthesize S1P, which signals through S1P3 and the PI3K and ERK/MAPK pathways to induce glial migration. As a whole, our data point to a central role for S1P in controlling glial cell motility. Because deregulation of this process is involved in several retinal pathologies, S1P signaling emerges as a potential tool for treating these diseases.
Related Compounds
Related Articles:
2015-04-01
[J. Pineal Res. 58(3) , 310-20, (2015)]
2014-09-01
[PLoS Genet. 10(9) , e1004659, (2014)]
2015-01-01
[PLoS ONE 10(2) , e0118188, (2015)]
2015-03-01
[Exp. Cell Res. 332(1) , 60-6, (2015)]
2015-01-01
[J. Biomater. Sci. Polym. Ed. 26(5) , 322-37, (2015)]