Toxicology Letters 2014-05-16

In vitro toxicokinetic studies of cyclosarin: molecular mechanisms of elimination.

Georg Reiter, Susanne Müller, Marianne Koller, Horst Thiermann, Franz Worek

Index: Toxicol. Lett. 227(1) , 1-11, (2014)

Full Text: HTML

Abstract

The toxicokinetics of in vitro elimination of highly toxic cyclosarin (GF) in biological systems revealed striking stereoselective differences in the range of 0.01μM to 1mM GF. While weak concentration dependency was detected for elimination of the toxic (-)-enantiomer indicating catalytic processes, elimination of less toxic (+)-GF followed unusual kinetics with relatively high concentration dependency. Fast initial GF binding in human heparinised plasma increased only at lower initial GF concentrations while (+)-GF binding strongly increased with decreasing GF concentration. In displacement experiments it was shown for the first time that GF binding on plasma components in rats and mice plasma was reversible. Investigations with human plasma require further methodical improvement. GF elimination by diisopropylfluorophosphatase (DFPase) wildtype as phosphotriesterase (PTE) model showed some similarities compared to human heparinised plasma. Impact of human serum albumin is negligible. When comparing kinetics of GF elimination with metabolite formation (fluoride and cyclohexyl methyl phosphonic acid, CHMPA), marked differences were detected. From the results a model was postulated illustrating possible steps of molecular mechanisms of GF interaction with plasma proteins including high affine fast initial binding followed by formation of metastable phosphonylated plasma proteins with subsequent hydrolysis and release of metabolites. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.


Related Compounds

  • Diisopropylfluoro-...
  • CYCLOHEXYL M...

Related Articles:

Tyrosine-Specific Chemical Modification with in Situ Hemin-Activated Luminol Derivatives.

2015-11-20

[ACS Chem. Biol. 10 , 2633-40, (2015)]

Development of a high-throughput screening for nerve agent detoxifying materials using a fully-automated robot-assisted biological assay.

2010-04-01

[Toxicol. In Vitro 24(3) , 1026-31, (2010)]

Inhibitory potency against human acetylcholinesterase and enzymatic hydrolysis of fluorogenic nerve agent mimics by human paraoxonase 1 and squid diisopropyl fluorophosphatase.

2008-05-06

[Biochemistry 47(18) , 5216-24, (2008)]

Quantification of hydrolysis of toxic organophosphates and organophosphonates by diisopropyl fluorophosphatase from Loligo vulgaris by in situ Fourier transform infrared spectroscopy.

2009-02-15

[Anal. Biochem. 385(2) , 187-93, (2009)]

Preliminary time-of-flight neutron diffraction study on diisopropyl fluorophosphatase (DFPase) from Loligo vulgaris.

2007-01-01

[Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 63(Pt 1) , 42-5, (2007)]

More Articles...