Journal of Materials Science: Materials in Medicine 2005-10-01

A novel antibacterial titania coating: metal ion toxicity and in vitro surface colonization.

F Heidenau, W Mittelmeier, R Detsch, M Haenle, F Stenzel, G Ziegler, H Gollwitzer

Index: J. Mater. Sci. Mater. Med. 16(10) , 883-8, (2005)

Full Text: HTML

Abstract

Postoperative implant-associated infection is still an unresolved and serious complication in modern surgery. Antibacterial and biocompatible surfaces could both reduce infection rates and promote tissue integration. In this respect, a comparative study of the antibacterial as well as the biocompatible potential of different metal ions in vitro is presented. The assays used were growth inhibition tests with different metal salts carried out with tissue cells and bacteria under corresponding culture conditions. Additionally, in vitro tests in direct surface contact with tissue cells and bacteria onto a novel copper containing sol-gel derived titanium dioxide coating (Cu-TiO2) and a fourfold Cu-TiO2 coating were performed. The values were compared to a non-filled titanium dioxide coating and standard Ti6Al4V alloy. SEM-investigations were performed to approve the results of the in vitro tests. Among Ag+, Zn2+, Co2+, Al3+ and Hg2+, the growth inhibition tests revealed an outstanding position of copper ions as antibacterial but nevertheless bio-tolerant additive. These results were affirmed by the cell tests in direct surface contact and SEM-investigations, where best cell growth was found on the Cu-TiO2 coatings. Highest antibacterial properties with a tolerable cytocompatibility could be observed on the fourfold Cu-TiO2 coatings. Consequently, surfaces with custom-tailored antibacterial properties may be established and could be of particular interest in revision and tumor arthroplasty.


Related Compounds

  • Cupric acetate mon...

Related Articles:

Fundamentals of MOF Thin Film Growth via Liquid-Phase Epitaxy: Investigating the Initiation of Deposition and the Influence of Temperature.

2015-06-09

[Langmuir 31 , 6114-21, (2015)]

Fine tuning of copper(II)-chlorophyll interactions in organic media. Metalation versus oxidation of the macrocycle.

2015-04-07

[Dalton Trans. 44(13) , 6012-22, (2015)]

Biochemical characterization of Yarrowia lipolytica LIP8, a secreted lipase with a cleavable C-terminal region.

2015-02-01

[Biochim. Biophys. Acta 1851(2) , 129-40, (2015)]

Silver-Mediated Synthesis of Indolizines via Oxidative C-H functionalization and 5- endo-dig cyclization.

2014-12-01

[Tetrahedron Lett. 55(50) , 6922-6924, (2014)]

Novel windows for "solar commodities": a device for CO2 reduction using plasmonic catalyst activation.

2015-01-01

[Faraday Discuss. 183 , 249-59, (2015)]

More Articles...