Quercetin-3-methyl ether suppresses proliferation of mouse epidermal JB6 P+ cells by targeting ERKs.
Jixia Li, Madhusoodanan Mottamal, Haitao Li, Kangdong Liu, Feng Zhu, Yong-Yeon Cho, Carlos P Sosa, Keyuan Zhou, G Tim Bowden, Ann M Bode, Zigang Dong
Index: Carcinogenesis 33(2) , 459-65, (2012)
Full Text: HTML
Abstract
Chemoprevention has been acknowledged as an important and practical strategy for the management of skin cancer. Quercetin-3-methyl ether, a naturally occurring compound present in various plants, has potent anticancer-promoting activity. We identified this compound by in silico virtual screening of the Traditional Chinese Medicine Database using extracellular signal-regulated kinase 2 (ERK2) as the target protein. Here, we showed that quercetin-3-methyl ether inhibited proliferation of mouse skin epidermal JB6 P+ cells in a dose- and time-dependent manner by inducing cell cycle G(2)-M phase accumulation. It also suppressed 12-O-tetradecanoylphorbol-13-acetate-induced neoplastic cell transformation in a dose-dependent manner. Its inhibitory effect was greater than quercetin. The activation of activator protein-1 was dose-dependently suppressed by quercetin-3-methyl ether treatment. Western blot and kinase assay data revealed that quercetin-3-methyl ether inhibited ERKs kinase activity and attenuated phosphorylation of ERKs. Pull-down assays revealed that quercetin-3-methyl ether directly binds with ERKs. Furthermore, a loss-of-function ERK2 mutation inhibited the effectiveness of the quercetin-3-methyl ether. Overall, these results indicated that quercetin-3-methyl ether exerts potent chemopreventive activity by targeting ERKs.
Related Compounds
Related Articles:
2015-01-01
[Biomed Res. Int. 2015 , 238010, (2015)]
1985-09-01
[Chem. Pharm. Bull. 33(9) , 4091-4, (1985)]
1989-01-01
[J. Nat. Prod. 52(3) , 629-33, (1989)]
2003-03-07
[Brain Res. 965(1-2) , 130-6, (2003)]
2007-01-01
[Biochimie 89(1) , 73-82, (2007)]