Identification of hydroxyl radical oxidation products of N-hexanoyl-homoserine lactone by reversed-phase high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry.
Yiling Cui, Rebecca L Frey, John L Ferry, P Lee Ferguson
Index: Rapid Commun. Mass Spectrom. 23(8) , 1212-20, (2009)
Full Text: HTML
Abstract
A reversed-phase high-performance liquid chromatography/electrospray tandem mass spectrometry method was developed for the characterization of hydroxyl radical oxidation products of N-hexanoyl-homoserine lactone (C6-HSL), a member of the N-acylhomoserine lactone (AHL) class of microbial quorum-sensing signaling molecules identified in many Gram-negative strains of bacteria. Six products were identified: four with molecular weight (MW) of 213 and two with MW of 260. The characteristic product ions formed through collision-induced dissociation (CID) provided diagnostic structural information. One of the photolysis products was determined to be N-(3-oxohexanoyl)homoserine lactone (3OC6-HSL), a highly active quorum-sensing signal, by comparison with a reference standard. Three structural isomers with the same mass as 3OC6-HSL were identified as acyl side chain oxidized C6-HSL (keto/enol functionalized) by accurate mass measurement and the structures of these products were proposed from CID spectral interpretation. Two structural isomers formed from concurrent oxidation and nitration of C6-HSL were also observed and their structures were postulated based on CID spectra. In addition to the six hydroxyl radical oxidation products formed from the C6-HSL precursor, five additional compounds generated from combined oxidation and lactonolysis of C6-HSL were identified and structures were postulated.
Related Compounds
Related Articles:
2013-11-01
[J. Bacteriol. 195(22) , 5223-32, (2013)]
2010-04-12
[Biomacromolecules 11(4) , 975-80, (2010)]
2009-01-01
[PLoS ONE 4(8) , e6820, (2009)]
2010-07-13
[Biochemistry 49(27) , 5621-3, (2010)]
2012-01-20
[Biochem. Biophys. Res. Commun. 417(3) , 991-5, (2012)]