Biosynthesis of the carbohydrate moieties of arabinogalactan proteins by membrane-bound β-glucuronosyltransferases from radish primary roots.
Maya Endo, Toshihisa Kotake, Yoko Watanabe, Kazumasa Kimura, Yoichi Tsumuraya
Index: Planta 238 , 1157-69, (2016)
Full Text: HTML
Abstract
A membrane fraction from etiolated 6-day-old primary radish roots (Raphanus sativus L. var hortensis) contained β-glucuronosyltransferases (GlcATs) involved in the synthesis of the carbohydrate moieties of arabinogalactan proteins (AGPs). The GlcATs transferred [(14)C]GlcA from UDP-[(14)C]GlcA on to β-(1 → 3)-galactan as an exogenous acceptor substrate, giving a specific activity of 50-150 pmol min(-1) (mg protein)(-1). The enzyme specimen also catalyzed the transfer of [(14)C]GlcA on to an enzymatically modified AGP from mature radish root. Analysis of the transfer products revealed that the transfer of [(14)C]GlcA occurred preferentially on to consecutive (1 → 3)-linked β-Gal chains as well as single branched β-(1 → 6)-Gal residues through β-(1 → 6) linkages, producing branched acidic side chains. The enzymes also transferred [(14)C]GlcA residues on to several oligosaccharides, such as β-(1 → 6)- and β-(1 → 3)-galactotrioses. A trisaccharide, α-L-Araf-(1 → 3)-β-Gal-(1 → 6)-Gal, was a good acceptor, yielding a branched tetrasaccharide, α-L-Araf-(1 → 3)[β-GlcA-(1 → 6)]-β-Gal-(1 → 6)-Gal. We report the first in vitro assay system for β-GlcATs involved in the AG synthesis as a step toward full characterization and cloning.
Related Compounds
Related Articles:
2015-03-01
[Fitoterapia 101 , 179-87, (2015)]
2014-08-30
[Oncotarget 5(16) , 7198-211, (2014)]
2015-02-01
[Mol. Imaging Biol. 17(1) , 111-8, (2015)]
2015-02-01
[FASEB J. 29(2) , 650-61, (2015)]