Effects of actin-like proteins encoded by two Bacillus pumilus phages on unstable lysogeny, revealed by genomic analysis.
Yihui Yuan, Qin Peng, Dandan Wu, Zheng Kou, Yan Wu, Pengming Liu, Meiying Gao
文献索引:Appl. Environ. Microbiol. 81(1) , 339-50, (2014)
全文:HTML全文
摘要
We characterized two newly isolated myoviruses, Bp8p-C and Bp8p-T, infecting the ginger rhizome rot disease pathogen Bacillus pumilus GR8. The plaque of Bp8p-T exhibited a clear center with a turbid rim, suggesting that Bp8p-T could transform into latent phage. Lysogeny assays showed that both the two phages could form latent states, while Bp8p-T could form latent phage at a higher frequency and stability than Bp8p-C. The genomes of Bp8p-C and Bp8p-T were 151,417 and 151,419 bp, respectively; both encoded 212 putative proteins, and only differed by three nucleotides. Moreover, owing to this difference, Bp8p-C encoded a truncated, putative actin-like plasmid segregation protein Gp27-C. Functional analysis of protein Gp27 showed that Gp27-T encoded by Bp8p-T exhibited higher ATPase activity and assembly ability than Gp27-C. The results indicate that the difference in Gp27 affected the phage lysogenic ability. Structural proteome analysis of Bp8p-C virion resulted in the identification of 14 structural proteins, among which a pectin lyase-like protein, a putative poly-gamma-glutamate hydrolase, and three proteins with unknown function, were firstly identified as components of the phage virion. Both phages exhibited specific lytic ability to the host strain GR8. Bp8p-C showed better control effect on the pathogen in ginger rhizome slices than Bp8p-T, suggesting that Bp8p-C has a potential application in bio-control of ginger rhizome rot disease. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
相关化合物
相关文献:
2014-08-01
[Mol. Plant 7(8) , 1365-83, (2014)]
2014-06-02
[J. Exp. Med. 211(6) , 1079-91, (2014)]
2012-07-01
[Int. J. Obes. 38(12) , 1538-44, (2014)]
2014-01-01
[PLoS Biol. 12(1) , e1001758, (2014)]
2014-12-11
[Oncogene 33(50) , 5688-96, (2014)]