Chemistry: A European Journal 2014-02-10

Regeneration of a conjugated sp² graphene system through selective defunctionalization of epoxides by using a proven synthetic chemistry mechanism.

Chun Kiang Chua, Martin Pumera

文献索引:Chemistry 20(7) , 1871-7, (2014)

全文:HTML全文

摘要

Graphene is a promising material capable of driving technological advancement. It is, however, a challenge to obtain pristine graphene in large quantities given the limitation of current synthetic methods. Among the numerous methods available, the chemical approach provides an optimistic outlook and has garnered much interest within the graphene community as a potential alternative. One of the most crucial steps of the chemical approach is the chemical reduction of graphene oxide as this dictates the final quality of the graphene sheets. In recent years, much of the focus has shifted to the usage of established reducing agents or oxygen removal reagents, frequently applied in organic chemistry, onto a graphene oxide platform. Herein, the selective removal of epoxide groups and subsequent regeneration of disrupted conjugated sp(2) system is highlighted, based on the synergistic effect of indium and indium(I) chloride. The morphological, structural, and electrical properties of the resulting graphene were fully characterized with X-ray photoelectron, Fourier transform IR, solid-state (13)C NMR, and Raman spectroscopy; thermogravimetric analysis; scanning electron microscopy; and conductivity measurements. The as-prepared graphene showed a tenfold increase in conductivity against conventional graphene treated with hydrazine reducing agent and demonstrated a high dispersion stability in ethanol. Moreover, the selective defunctionalization of the epoxide groups provides opportunities for potential tailoring of graphene properties for prospective applications.Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


相关化合物

  • 硫酸
  • 过氧化氢
  • 硝酸钠
  • 氯化亚铟

相关文献:

Evaluation of the immune response and protective efficacy of Schistosoma mansoni Cathepsin B in mice using CpG dinucleotides as adjuvant.

2015-01-03

[Vaccine 33(2) , 346-53, (2014)]

Comparison of mcl-Poly(3-hydroxyalkanoates) synthesis by different Pseudomonas putida strains from crude glycerol: citrate accumulates at high titer under PHA-producing conditions.

2014-01-01

[BMC Biotechnol. 14 , 962, (2015)]

Process development for scum to biodiesel conversion.

2015-06-01

[Bioresour. Technol. 185 , 185-93, (2015)]

Lipid production in the under-characterized oleaginous yeasts, Rhodosporidium babjevae and Rhodosporidium diobovatum, from biodiesel-derived waste glycerol.

2015-06-01

[Bioresour. Technol. 185 , 49-55, (2015)]

Investigation of the interactions between the EphB2 receptor and SNEW peptide variants.

2014-12-01

[Growth Factors 32(6) , 236-46, (2014)]

更多文献...