Journal of Hazardous Materials 2014-08-15

Indirect electroreduction as pretreatment to enhance biodegradability of metronidazole.

I Saidi, I Soutrel, D Floner, F Fourcade, N Bellakhal, A Amrane, F Geneste

文献索引:J. Hazard. Mater. 278 , 172-9, (2014)

全文:HTML全文

摘要

The removal of metronidazole, a biorecalcitrant antibiotic, by coupling an electrochemical reduction with a biological treatment was examined. Electroreduction was performed in a home-made flow cell at -1.2V/SCE on graphite felt. After only one pass through the cell, analysis of the electrolyzed solution showed a total degradation of metronidazole. The biodegradability estimated from the BOD5/COD ratio increased from 0.07 to 0.2, namely below the value usually considered as the limit of biodegradability (0.4). In order to improve these results, indirect electrolysis of metronidazole was performed with a titanium complex known to reduce selectively nitro compounds into amine. The catalytic activity of the titanium complex towards electroreduction of metronidazole was shown by cyclic voltammetry analyses. Indirect electrolysis led to an improvement of the biodegradability from 0.07 to 0.42. To confirm the interest of indirect electroreduction to improve the electrochemical pretreatment, biological treatment was then carried out on activated sludge after direct and indirect electrolyses; different parameters were followed during the culture such as pH, TOC and metronidazole concentration. Both electrochemical processes led to a more efficient biodegradation of metronidazole compared with the single biological treatment, leading to an overall mineralization yield for the coupling process of 85%. Copyright © 2014 Elsevier B.V. All rights reserved.


相关化合物

  • 硫酸
  • 乙腈
  • 甲硝唑

相关文献:

Evaluation of the immune response and protective efficacy of Schistosoma mansoni Cathepsin B in mice using CpG dinucleotides as adjuvant.

2015-01-03

[Vaccine 33(2) , 346-53, (2014)]

Comparison of mcl-Poly(3-hydroxyalkanoates) synthesis by different Pseudomonas putida strains from crude glycerol: citrate accumulates at high titer under PHA-producing conditions.

2014-01-01

[BMC Biotechnol. 14 , 962, (2015)]

Process development for scum to biodiesel conversion.

2015-06-01

[Bioresour. Technol. 185 , 185-93, (2015)]

Lipid production in the under-characterized oleaginous yeasts, Rhodosporidium babjevae and Rhodosporidium diobovatum, from biodiesel-derived waste glycerol.

2015-06-01

[Bioresour. Technol. 185 , 49-55, (2015)]

Investigation of the interactions between the EphB2 receptor and SNEW peptide variants.

2014-12-01

[Growth Factors 32(6) , 236-46, (2014)]

更多文献...