Nanocomposites with functionalised polysaccharide nanocrystals through aqueous free radical polymerisation promoted by ozonolysis.
E Espino-Pérez, Robert G Gilbert, S Domenek, M C Brochier-Salon, M N Belgacem, J Bras
文献索引:Carbohydr. Polym. 135 , 256-66, (2015)
全文:HTML全文
摘要
Cellulose nanocrystals (CNC) and starch nanocrystals (SNC) were grafted by ozone-initiated free-radical polymerisation of styrene in a heterogeneous medium. Surface functionalisation was confirmed by infrared spectroscopy, contact angle measurements, and thermogravimetric and elemental analysis. X-ray diffraction and scanning electron microscopy showed that there was no significant change in the morphology or crystallinity of the nanoparticles following ozonolysis. The grafting efficiency, quantified by (13)C NMR, was greater for SNC, with a styrene/anhydroglucose ratio of 1.56 compared to 0.25 for CNC. The thermal stability improved by 100°C. The contact angles were 97° and 78° following the SNC and CNC grafting, respectively, demonstrating the efficiency of the grafting in changing the surface properties even at low levels of surface substitution. The grafting increased the compatibility with the polylactide, and produced nanocomposites with improved water vapour barrier properties. Ozone-mediated grafting is thus a promising approach for surface functionalisation of polysaccharide nanocrystals. Copyright © 2015 Elsevier Ltd. All rights reserved.
相关化合物
相关文献:
2015-01-03
[Vaccine 33(2) , 346-53, (2014)]
2014-01-01
[BMC Biotechnol. 14 , 962, (2015)]
2015-06-01
[Bioresour. Technol. 185 , 185-93, (2015)]
2015-06-01
[Bioresour. Technol. 185 , 49-55, (2015)]
2014-12-01
[Growth Factors 32(6) , 236-46, (2014)]