Antimicrobial activities and action mechanism studies of transportan 10 and its analogues against multidrug-resistant bacteria.
Junqiu Xie, Yuanmei Gou, Qian Zhao, Sisi Li, Wei Zhang, Jingjing Song, Lingyun Mou, Jingyi Li, Kairong Wang, Bangzhi Zhang, Wenle Yang, Rui Wang
文献索引:J. Pept. Sci. 21 , 599-607, (2015)
全文:HTML全文
摘要
The increased emergence of multidrug-resistant bacteria is perceived as a critical public health threat, creating an urgent need for the development of novel classes of antimicrobials. Cell-penetrating peptides that share common features with antimicrobial peptides have been found to have antimicrobial activity and are currently being considered as potential alternatives to antibiotics. Transportan 10 is a chimeric cell-penetrating peptide that has been reported to transport biologically relevant cargoes into mammalian cells and cause damage to microbial membranes. In this study, we designed a series of TP10 analogues and studied their structure-activity relationships. We first evaluated the antimicrobial activities of these compounds against multidrug-resistant bacteria, which are responsible for most nosocomial infections. Our results showed that several of these compounds had potent antimicrobial and biofilm-inhibiting activities. We also measured the toxicity of these compounds, finding that Lys substitution could increase the antimicrobial activity but significantly enhanced the cytotoxicity. Pro introduction could reduce the cytotoxicity but disrupted the helical structure, resulting in a loss of activity. In the mechanistic studies, TP10 killed bacteria by membrane-active and DNA-binding activities. In conclusion, TP10 and its analogues could be developed into promising antibiotic candidates for the treatment of infections caused by multidrug-resistant bacteria.Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.
相关化合物
相关文献:
2014-10-17
[Int. J. Food Microbiol. 189 , 98-105, (2014)]
2014-01-01
[PLoS ONE 9(6) , e99421, (2014)]
2014-04-01
[Pharmacogn. Mag. 10(Suppl 2) , S383-91, (2014)]
2014-07-18
[ACS Chem. Biol. 9(7) , 1595-602, (2014)]
2014-09-01
[Appl. Environ. Microbiol. 80(18) , 5583-92, (2014)]