Interaction and enrichment of protein on cationic polysaccharide surfaces.
Tamilselvan Mohan, Gerald Findenig, Stefan Höllbacher, Christoph Cerny, Tijana Ristić, Rupert Kargl, Stefan Spirk, Uros Maver, Karin Stana-Kleinschek, Volker Ribitsch
文献索引:Colloids Surf. B Biointerfaces 123 , 533-41, (2014)
全文:HTML全文
摘要
In this study, the interaction of fluorescein isothiocyanate functionalized bovine serum albumin (FITC-BSA) with cellulose surfaces decorated with trimethyl chitosan (TMC) is investigated. Two types of TMC, one exhibiting a lower and one with a higher degree of cationization are used for protein adsorption. The adsorption is carried out at different pH values and concentrations of the protein solution. The amount, morphology and wettability of FITC-BSA coating on TMC/cellulose films are determined using quartz crystal microbalance with dissipation (QCM-D), atomic force microscopy, fluorescence microscopy and contact angle measurements. A lower pH and higher concentration of protein solution resulted in a greater amount of irreversibly adsorbed material owing to the reduced solubility and minimized electrostatic repulsion. A maximum adsorption of protein is observed on cellulose surfaces functionalized with TMC carrying a higher degree of cationization compared to TMC with a lower degree of cationization and pure cellulose surfaces at all applied concentrations and pH values. BSA is a commonly used model protein and is applied in this study to better understand its interaction with cationically rendered cellulose surfaces. Such knowledge is essential for creation of multifunctional polysaccharide-based biomaterials. Copyright © 2014 Elsevier B.V. All rights reserved.
相关化合物
相关文献:
2015-04-13
[Biomacromolecules 16(4) , 1382-9, (2015)]
2015-04-01
[Appl. Environ. Microbiol. 81(7) , 2274-83, (2015)]
2014-12-01
[J. Endocrinol. 223(3) , 241-53, (2014)]
2014-12-29
[Small 10(24) , 5126-36, (2014)]
2014-10-01
[Biochim. Biophys. Acta 1851(2) , 152-62, (2015)]