Journal of Inherited Metabolic Disease 1993-01-01

Physiology and pathophysiology of organic acids in cerebrospinal fluid.

G F Hoffmann, W Meier-Augenstein, S Stöckler, R Surtees, D Rating, W L Nyhan

文献索引:J. Inherit. Metab. Dis. 16(4) , 648-69, (1993)

全文:HTML全文

摘要

Concentrations of organic acids in cerebrospinal fluid (CSF) appear to be directly dependent upon their rate of production in the brain. There is evidence that the net release of short-chain monocarboxylic acids from the brain is a major route for removing these products of cerebral metabolism. Concentrations of organic acids in blood and CSF are largely independent of each other. Quantitative reference values for the concentrations of organic acids in CSF and plasma as well as ratios of individual organic acids between CSF and plasma were determined in 35 pairs of samples from paediatric patients. Over 25 organic acids were quantifiable in all or in the majority of CSF and/or plasma specimens (limit of detection 1 mumol/L). There were substantial differences in the CSF/plasma ratios between subgroups of organic acids. Metabolites related to fatty-acid oxidation were present in CSF in substantially less amounts than in plasma. Organic acids related to carbohydrate and energy metabolism and to amino acid degradation were present in CSF in the same amounts as or slightly smaller amounts than in plasma. Finally, some organic acids were found in substantially higher amounts in CSF than in plasma, e.g. glycolate, glycerate, 2,4-dihydroxybutyrate, citrate and isocitrate. Studies of organic acids in CSF and plasma samples are presented from patients with 'cerebral' lactic acidosis, disorders of propionate and methylmalonate metabolism, glutaryl-CoA dehydrogenase deficiency and L-2-hydroxy-glutaric aciduria. It became apparent that derangements of organic acids in the CSF may occur independently of the systemic metabolism. Quantitative organic acid analysis in CSF will yield new information on the pathophysiology in the central nervous system (CNS) of these disorders and may prove necessary for successful monitoring of treatment of organoacidopathies, which present mainly with neurological disease. For example, in glutaryl-CoA dehydrogenase deficiency the urinary excretion of glutarate appears to be an inadequate parameter for monitoring the effect of dietary therapy, without plasma and CSF determinations. In L-2-hydroxyglutaric aciduria the elevation of L-2-hydroxyglutarate was found to be greater in CSF than in plasma. In addition, some other organic acids, glycolate, glycerate, 2,4-dihydroxybutyrate, citrate and isocitrate, were also elevated in the CSF of the patients out of proportion to normal levels in plasma and urine. High concentrations of an unknown compound, which was tentatively identified as 2,4-dihydroxyglutarate, were found in the CSF of patients with L-2-hydroxyglutaric aciduria.(ABSTRACT TRUNCATED AT 400 WORDS)


相关化合物

  • 2-羟基异丁酸
  • 4-甲基-2-氧戊酸
  • DL-3-羟基丁酸
  • 硬脂酸
  • 戊二酸
  • 丙酮酸
  • L-苹果酸
  • 2-羟基-3-甲基丁酸
  • 月桂酸
  • 棕榈酸

相关文献:

Thermophilic Coenzyme B12-Dependent Acyl Coenzyme A (CoA) Mutase from Kyrpidia tusciae DSM 2912 Preferentially Catalyzes Isomerization of (R)-3-Hydroxybutyryl-CoA and 2-Hydroxyisobutyryl-CoA.

2015-07-01

[Appl. Environ. Microbiol. 81 , 4564-72, (2015)]

Capillary electrophoresis of small ions using complex formation and indirect detection.

2009-06-01

[Electrophoresis 30 Suppl 1 , S34-9, (2009)]

Solid-state and solution-state coordination chemistry of lanthanide(III) complexes with α-hydroxyisobutyric acid.

2012-12-17

[Inorg. Chem. 51(24) , 13254-63, (2012)]

Enhancement of hydroxyl radical generation in the Fenton reaction by alpha-hydroxy acid.

1998-09-01

[Biochem. Mol. Biol. Int. 46(1) , 137-45, (1998)]

Computer optimization of background electrolyte composition in the separation of metal ions by capillary electrophoresis.

1996-08-01

[Electrophoresis 17(8) , 1367-72, (1996)]

更多文献...