Journal of chromatography. A 2015-08-28

Two-dimensional ion chromatography for the separation of ionic organophosphates generated in thermally decomposed lithium hexafluorophosphate-based lithium ion battery electrolytes.

Vadim Kraft, Martin Grützke, Waldemar Weber, Jennifer Menzel, Simon Wiemers-Meyer, Martin Winter, Sascha Nowak

文献索引:J. Chromatogr. A. 1409 , 201-9, (2015)

全文:HTML全文

摘要

A two-dimensional ion chromatography (IC/IC) technique with heart-cutting mode for the separation of ionic organophosphates was developed. These analytes are generated during thermal degradation of three different commercially available Selectilyte™ lithium ion battery electrolytes. The composition of the investigated electrolytes is based on 1M lithium hexafluorophosphate (LiPF6) dissolved in ethylene carbonate/dimethyl carbonate (50:50wt%, LP30), ethylene carbonate/diethyl carbonate (50:50wt%, LP40) and ethylene carbonate/ethyl methyl carbonate (50:50wt%, LP50). The organophosphates were pre-separated from PF6(-) anion on the low capacity A Supp 4 column, which was eluted with a gradient step containing acetonitrile. The fraction containing analytes was retarded on a pre-concentration column and after that transferred to the high capacity columns, where the separation was performed isocratically. Different stationary phases and eluents were applied on the 2nd dimension for the investigation of retention times, whereas the highly promising results were obtained with a high capacitive A Supp 10 column. The organophosphates generated in LP30 and LP40 electrolytes could be separated by application of an aqueous NaOH eluent providing fast analysis time within 35min. For the separation of the organophosphates of LP50 electrolyte due to its complexity a NaOH eluent containing a mixture of methanol/H2O was necessary. In addition, the developed two dimensional IC method was hyphenated to an inductively coupled plasma mass spectrometer (ICP-MS) using aqueous NaOH without organic modifiers. This proof of principle measurement was carried out for future quantitative investigation regarding the concentration of the ionic organophosphates. Furthermore, the chemical stability of several ionic organophosphates in water and acetonitrile at room temperature over a period of 10h was investigated. In both solvents no decomposition of the investigated analytes was observed and therefore water as solvent for dilution of samples was proved as suitable. Copyright © 2015 Elsevier B.V. All rights reserved.


相关化合物

  • 纯碱
  • 磷酸二丁酯
  • 氢氧化钠
  • 1,2-Benzenedicarbo...
  • 乙腈
  • 甲醇
  • 异丙醇
  • 磷酸氢二钠,十二水
  • 3-乙基-2,4-戊烷二...
  • 碳酸氢钠

相关文献:

Kafirin adsorption on ion-exchange resins: isotherm and kinetic studies.

2014-08-22

[J. Chromatogr. A. 1356 , 105-16, (2014)]

Studying the chemistry of cationized triacylglycerols using electrospray ionization mass spectrometry and density functional theory computations.

2014-08-01

[J. Am. Soc. Mass Spectrom. 25(8) , 1421-40, (2014)]

Embryonic development and maternal regulation of murine circadian clock function.

2015-04-01

[Chronobiol. Int. 32(3) , 416-27, (2015)]

Protective role of adenylate cyclase in the context of a live pertussis vaccine candidate.

2014-01-01

[Microbes Infect. 16(1) , 51-60, (2014)]

Coffee silverskin: a possible valuable cosmetic ingredient.

2015-03-01

[Pharm. Biol. 53(3) , 386-94, (2015)]

更多文献...