Abatement of aqueous anionic contaminants by thermo-responsive nanocomposites: (poly(N-isopropylacrylamide))-co-silylanized magnesium/aluminun layered double hydroxides.
Hua Chen, Guangren Qian, Xiuxiu Ruan, Ray L Frost
文献索引:J. Colloid. Interface Sci. 448 , 65-72, (2015)
全文:HTML全文
摘要
A series of novel thermo-responsive composite sorbents, were prepared by free-radical co-polymerization of N-isopropylacrylamide (NIPAm) and the silylanized Mg/Al layered double hydroxides (SiLDHs), named as PNIPAm-co-SiLDHs. For keeping the high affinity of Mg/Al layered double hydroxides towards anions, the layered structure of LDHs was assumed to be reserved in PNIPAm-co-SiLDHs by the silanization of the wet LDH plates as evidenced by the X-ray powder diffraction. The sorption capacity of PNIPAm-co-SiLDH (13.5 mg/g) for Orange-II from water was found to be seven times higher than that of PNIPAm (2.0mg/g), and the sorption capacities of arsenate onto PNIPAm-co-SiLDH are also greater than that onto PNIPAm, for both As(III) and As(V). These sorption results suggest that reserved LDH structure played a significant role in enhancing the sorption capacities. NO3(-) intercalated LDHs composite showed the stronger sorption capacity for Orange-II than that of CO3(2-). After sorption, the PNIPAm-co-SiLDH may be removed from water because of its gel-like nature, and may be easily regenerated contributing to the accelerated desorption of anionic contaminants from PNIPAm-co-SiLDHs by the unique phase-transfer feature through slightly heating (to 40 °C). These recyclable and regeneratable properties of thermo-responsive nanocomposites facilitate its potential application in the in-situ remediation of organic and inorganic anions from contaminated water.Copyright © 2015 Elsevier Inc. All rights reserved.
相关化合物
相关文献:
2014-08-22
[J. Chromatogr. A. 1356 , 105-16, (2014)]
2014-08-01
[J. Am. Soc. Mass Spectrom. 25(8) , 1421-40, (2014)]
2015-04-01
[Chronobiol. Int. 32(3) , 416-27, (2015)]
2014-01-01
[Microbes Infect. 16(1) , 51-60, (2014)]
2015-03-01
[Pharm. Biol. 53(3) , 386-94, (2015)]