Sensitive naked eye detection of hydrogen sulfide and nitric oxide by aza-BODIPY dyes in aqueous medium.
Nagappanpillai Adarsh, Megha S Krishnan, Danaboyina Ramaiah
文献索引:Anal. Chem. 86(18) , 9335-42, (2014)
全文:HTML全文
摘要
With an objective to develop optical probes for biologically important anions and neutral molecules, we synthesized three novel NIR absorbing aza-BODIPY derivatives, 3a-3c, and have systematically tuned their photophysical properties by changing the peripheral substitution. A profound red-shift was observed in the absorption and fluorescence spectra of the aza-BODIPY dyes with the change in substitution from azido (3a) to amino (3b) to dimethylamino (3c) groups. Theoretical calculations of 3a-3c showed a consistent decrease in bandgap, which supports the observed spectral changes. The study of their interactions with various analytes revealed that the azido-aza-BODIPY 3a selectively interacts with hydrogen sulfide (H2S) when compared to other molecules. Uniquely, the detection of H2S can be visualized through a change in color from bright blue to purple with a detection limit of 0.5 ppm. The sensitivity of the probe was observed to be ~20-fold higher than the allowed exposure limits of H2S as defined by EPA (10 ppm). The aza-BODIPY derivative 3b, on the other hand, exhibited selective interactions with nitrite ions (NO2(-)) and nitric oxide (NO) in aqueous medium through a visible color change from blue to green with a sensitivity of 20 and 0.15 ppb, respectively. In contrast, the dimethylamino-aza-BODIPY derivative, 3c, showed negligible affinity for the anions and neutral molecules tested. By tuning the photophysical properties through the judicious functionalization, the aza-BODIPY dyes thus synthesized can be utilized for the sensitive on-site detection and analysis of H2S, NO2(-), and NO in the aqueous medium.
相关化合物
相关文献:
2014-08-22
[J. Chromatogr. A. 1356 , 105-16, (2014)]
2014-08-01
[J. Am. Soc. Mass Spectrom. 25(8) , 1421-40, (2014)]
2015-04-01
[Chronobiol. Int. 32(3) , 416-27, (2015)]
2014-01-01
[Microbes Infect. 16(1) , 51-60, (2014)]
2015-03-01
[Pharm. Biol. 53(3) , 386-94, (2015)]