Molecular Pharmaceutics 2015-01-05

Expression of drug transporters and drug metabolizing enzymes in the bladder urothelium in man and affinity of the bladder spasmolytic trospium chloride to transporters likely involved in its pharmacokinetics.

Maria Bexten, Stefan Oswald, Markus Grube, Jia Jia, Tanja Graf, Uwe Zimmermann, Kathrin Rodewald, Oliver Zolk, Ulrich Schwantes, Werner Siegmund, Markus Keiser

文献索引:Mol. Pharm. 12(1) , 171-8, (2015)

全文:HTML全文

摘要

The cationic, water-soluble quaternary trospium chloride (TC) is incompletely absorbed from the gut and undergoes wide distribution but does not pass the blood-brain barrier. It is secreted by the kidneys, liver, and intestine. To evaluate potential transport mechanisms for TC, we measured affinity of the drug to the human uptake and efflux transporters known to be of pharmacokinetic relevance. Affinity of TC to the uptake transporters OATP1A2, -1B1, -1B3, -2B1, OCT1, -2, -3, OCTN2, NTCP, and ASBT and the efflux carriers P-gp, MRP2 and MRP3 transfected in HEK293 and MDCK2 cells was measured. To identify relevant pharmacokinetic mechanisms in the bladder urothelium, mRNA expression of multidrug transporters, drug metabolizing enzymes, and nuclear receptors, and the uptake of TC into primary human bladder urothelium (HBU) cells were measured. TC was shown to be a substrate of OATP1A2 (Km = 6.9 ± 1.3 μmol/L; Vmax = 41.6 ± 1.8 pmol/mg·min), OCT1 (Km = 106 ± 16 μmol/L; Vmax = 269 ± 18 pmol/mg·min), and P-gp (Km = 34.9 ± 7.5 μmol/L; Vmax = 105 ± 9.1 pmol/mg·min, lipovesicle assay). The genetic OATP1A2 variants *2 and *3 were loss-of-function transporters for TC. The mRNA expression analysis identified the following transporter proteins in the human urothelium: ABCB1 (P-gp), ABCC1-5 (MRP1-5), ABCG2 (BCRP), SLCO2B1 (OATP2B1), SLCO4A1 (OATP4A1), SLC22A1 (OCT1), SLC22A3 (OCT3), SLC22A4 (OCTN1), SLC22A5 (OCTN2), and SLC47A1 (MATE1). Immuno-reactive P-gp and OATP1A2 were localized to the apical cell layers. Drug metabolizing enzymes CYP3A5, -2B6, -2B7 -2E1, SULT1A1-4, UGT1A1-10, and UGT2B15, and nuclear receptors NR1H3 and NR1H4 were also expressed on mRNA level. TC was taken up into HBU cells (Km = 18.5 ± 4.8 μmol/L; Vmax = 106 ± 11.3 pmol/mg·min) by mechanisms that could be synergistically inhibited by naringin (IC50 = 10.8 (8.4; 13.8) μmol/L) and verapamil (IC50 = 4.6 (2.8; 7.5) μmol/L), inhibitors of OATP1A2 and OCT1, respectively. Affinity of TC to OCT1 and P-glycoprotein may be the reason for incomplete oral absorption, wide distribution into liver and kidneys, and substantial intestinal and renal secretions. Absence of brain distribution may result from affinity to P-gp and a low affinity to OATP1A2. The human urothelium expresses many drug transporters and drug metabolizing enzymes that may interact with TC and other drugs eliminated into the urine.


相关化合物

  • 柚皮苷
  • 十二烷基硫酸钠
  • 去氧胆酸钠
  • 4',6-二脒基-2-苯基...
  • 磺溴酞钠

相关文献:

Preconditioning L6 Muscle Cells with Naringin Ameliorates Oxidative Stress and Increases Glucose Uptake.

2015-01-01

[PLoS ONE 10 , e0132429, (2015)]

Pseudomonas aeruginosa Biofilm Formation and Persistence, along with the Production of Quorum Sensing-Dependent Virulence Factors, Are Disrupted by a Triterpenoid Coumarate Ester Isolated from Dalbergia trichocarpa, a Tropical Legume.

2015-01-01

[PLoS ONE 10 , e0132791, (2015)]

The antioxidant and antigenotoxic properties of citrus phenolics limonene and naringin.

2015-07-01

[Food Chem. Toxicol. 81 , 160-70, (2015)]

Polyphenolic Profile of Pear Leaves with Different Resistance to Pear Psylla (Cacopsylla pyri).

2015-09-02

[J. Agric. Food Chem. 63 , 7476-86, (2015)]

Metabolite profiling of red and white pitayas (Hylocereus polyrhizus and Hylocereus undatus) for comparing betalain biosynthesis and antioxidant activity.

2014-08-27

[J. Agric. Food Chem. 62(34) , 8764-71, (2014)]

更多文献...