Sulfa drugs inhibit sepiapterin reduction and chemical redox cycling by sepiapterin reductase.
Shaojun Yang, Yi-Hua Jan, Vladimir Mishin, Jason R Richardson, Muhammad M Hossain, Ned D Heindel, Diane E Heck, Debra L Laskin, Jeffrey D Laskin
文献索引:J. Pharmacol. Exp. Ther. 352(3) , 529-40, (2015)
全文:HTML全文
摘要
Sepiapterin reductase (SPR) catalyzes the reduction of sepiapterin to dihydrobiopterin (BH2), the precursor for tetrahydrobiopterin (BH4), a cofactor critical for nitric oxide biosynthesis and alkylglycerol and aromatic amino acid metabolism. SPR also mediates chemical redox cycling, catalyzing one-electron reduction of redox-active chemicals, including quinones and bipyridinium herbicides (e.g., menadione, 9,10-phenanthrenequinone, and diquat); rapid reaction of the reduced radicals with molecular oxygen generates reactive oxygen species (ROS). Using recombinant human SPR, sulfonamide- and sulfonylurea-based sulfa drugs were found to be potent noncompetitive inhibitors of both sepiapterin reduction and redox cycling. The most potent inhibitors of sepiapterin reduction (IC50s = 31-180 nM) were sulfasalazine, sulfathiazole, sulfapyridine, sulfamethoxazole, and chlorpropamide. Higher concentrations of the sulfa drugs (IC50s = 0.37-19.4 μM) were required to inhibit redox cycling, presumably because of distinct mechanisms of sepiapterin reduction and redox cycling. In PC12 cells, which generate catecholamine and monoamine neurotransmitters via BH4-dependent amino acid hydroxylases, sulfa drugs inhibited both BH2/BH4 biosynthesis and redox cycling mediated by SPR. Inhibition of BH2/BH4 resulted in decreased production of dopamine and dopamine metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, and 5-hydroxytryptamine. Sulfathiazole (200 μM) markedly suppressed neurotransmitter production, an effect reversed by BH4. These data suggest that SPR and BH4-dependent enzymes, are "off-targets" of sulfa drugs, which may underlie their untoward effects. The ability of the sulfa drugs to inhibit redox cycling may ameliorate ROS-mediated toxicity generated by redox active drugs and chemicals, contributing to their anti-inflammatory activity. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
相关化合物
相关文献:
2010-01-01
[Chem. Res. Toxicol. 23 , 171-83, (2010)]
2009-01-01
[Bioorg. Med. Chem. 17 , 896-904, (2009)]
2014-06-06
[J. Chromatogr. A. 1345 , 17-28, (2014)]
2014-08-29
[J. Chromatogr. A. 1357 , 158-64, (2014)]
2015-08-15
[Food Chem. 181 , 119-26, (2015)]