Human epidermal growth factor receptor-2 antibodies enhance the specificity and anticancer activity of light-sensitive doxorubicin-labeled liposomes.
Qingpo Li, Qin Tang, Peizun Zhang, Zuhua Wang, Tiantian Zhao, Jialin Zhou, Hongrui Li, Qian Ding, Wei Li, Fuqiang Hu, Yongzhong Du, Hong Yuan, Shuqing Chen, Jianqing Gao, Jinbiao Zhan, Jian You
文献索引:Biomaterials 57 , 1-11, (2015)
全文:HTML全文
摘要
Antibody-mediated targeting therapy has been successful in treating patients with cancers by improving the specificity and clinical efficacy. In this study, we developed a human epidermal growth factor receptor-2 (HER2) antibody-conjugated drug delivery system, using near-infrared (NIR) light-sensitive liposomes containing doxorubicin (DOX) and hollow gold nanospheres (HAuNS). We demonstrated the specific binding and selective toxicity of the system to HER2-positive tumor cells in co-cultures of HER2-positive and -negative cells. Furthermore, the HER2-antibody-mediated delivery of targeted liposomes was confirmed in a double-tumor model in nude mice simultaneously bearing HER2-positive and -negative tumors. This induced a >2-fold increased accumulation in the tumors with positive expression of HER2 than that with non-targeted liposomes (no HER2-antibody conjugation). The combination of targeted liposomes with NIR laser irradiation had significant antitumor activity in vivo with the tumor inhibition efficiency up to 92.7%, attributed to the increased accumulation in tumors and the double efficacy of photothermal-chemotherapy. Moreover, targeted liposomes did not cause systemic toxicity during the experiment period, attributable to the reduced dose of DOX, the decreased accumulation of liposomes in normal tissues, and the low irradiation power. The targeted liposomes provide a multifunctional nanotechnology platform for antibody-mediated delivery, light-trigged drug release, and combined photothermal-chemotherapy, which may have potential in the clinical treatment of cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.
相关化合物
相关文献:
2015-03-01
[J. Liposome Res. 25(1) , 38-45, (2015)]
2015-09-08
[Mol. Pharm. 12 , 3226-36, (2015)]
2015-06-10
[ACS Appl. Mater. Interfaces 7 , 12168-75, (2015)]
2015-09-01
[Chem. Asian J. 10 , 1940-7, (2015)]
2015-01-01
[Nat. Commun. 6 , 6571, (2015)]