PLoS ONE 2015-01-01

Investigation of Overrun-Processed Porous Hyaluronic Acid Carriers in Corneal Endothelial Tissue Engineering.

Jui-Yang Lai, Hsiao-Yun Cheng, David Hui-Kang Ma

文献索引:PLoS ONE 10 , e0136067, (2015)

全文:HTML全文

摘要

Hyaluronic acid (HA) is a linear polysaccharide naturally found in the eye and therefore is one of the most promising biomaterials for corneal endothelial regenerative medicine. This study reports, for the first time, the development of overrun-processed porous HA hydrogels for corneal endothelial cell (CEC) sheet transplantation and tissue engineering applications. The hydrogel carriers were characterized to examine their structures and functions. Evaluations of carbodiimide cross-linked air-dried and freeze-dried HA samples were conducted simultaneously for comparison. The results indicated that during the fabrication of freeze-dried HA discs, a technique of introducing gas bubbles in the aqueous biopolymer solutions can be used to enlarge pore structure and prevent dense surface skin formation. Among all the groups studied, the overrun-processed porous HA carriers show the greatest biological stability, the highest freezable water content and glucose permeability, and the minimized adverse effects on ionic pump function of rabbit CECs. After transfer and attachment of bioengineered CEC sheets to the overrun-processed HA hydrogel carriers, the therapeutic efficacy of cell/biopolymer constructs was tested using a rabbit model with corneal endothelial dysfunction. Clinical observations including slit-lamp biomicroscopy, specular microscopy, and corneal thickness measurements showed that the construct implants can regenerate corneal endothelium and restore corneal transparency at 4 weeks postoperatively. Our findings suggest that cell sheet transplantation using overrun-processed porous HA hydrogels offers a new way to reconstruct the posterior corneal surface and improve endothelial tissue function.


相关化合物

  • 1-乙基-(3-二甲基氨...
  • 盐酸
  • 醋酸泼尼松龙
  • 3,3'-二甲氧基联苯...
  • 盐酸甲苯噻嗪

相关文献:

Minimizing the non-specific binding of nanoparticles to the brain enables active targeting of Fn14-positive glioblastoma cells.

2015-02-01

[Biomaterials 42 , 42-51, (2014)]

Altering in vivo macrophage responses with modified polymer properties.

2015-07-01

[Biomaterials 56 , 187-97, (2015)]

Species-dependent binding of new synthesized bicalutamide analogues to albumin by optical biosensor analysis.

2015-01-01

[J. Pharm. Biomed. Anal. 111 , 324-32, (2015)]

Herceptin conjugated PLGA-PHis-PEG pH sensitive nanoparticles for targeted and controlled drug delivery.

2015-06-20

[Int. J. Pharm. 487 , 81-90, (2015)]

Development of poly (I:C) modified doxorubicin loaded magnetic dendrimer nanoparticles for targeted combination therapy.

2014-10-01

[Biomed. Pharmacother. 68(8) , 979-87, (2014)]

更多文献...