Surfactant-controlled composition and crystal structure of manganese(II) sulfide nanocrystals prepared by solvothermal synthesis.
Elena Capetti, Anna M Ferretti, Vladimiro Dal Santo, Alessandro Ponti
文献索引:Beilstein J. Nanotechnol. 6 , 2319-29, (2016)
全文:HTML全文
摘要
We investigated how the outcome of the solvothermal synthesis of manganese(II) sulfide (MnS) nanocrystals (NCs) is affected by the type and amount of long chain surfactant present in the reaction mixture. Prompted by a previous observation that a larger than stoichiometric amount of sulfur is required [Puglisi, A.; Mondini, S.; Cenedese, S.; Ferretti, A. M.; Santo, N.; Ponti A. Chem. Mater. 2010, 22, 2804-2813], we carried out a wide set of reactions using Mn(II) carboxylates and Mn2(CO)10 as precursors with varying amounts of sulfur and carboxylic acid. MnS NCs were obtained provided that the S/Mn ratio was larger than the L/Mn ratio, otherwise MnO NCs were produced. Since MnS can crystallize in three distinct phases (rock salt α-MnS, zincblende β-MnS, and wurtzite γ-MnS), we also investigated whether the surfactant affected the NC polymorphism. We found that MnS polymorphism can be controlled by appropriate selection of the surfactant. γ-MnS nanocrystals formed when a 1:2 mixture of long chain carboxylic acid and amine was used, irrespective of the presence of carboxylic acid as a free surfactant or ligand in the metal precursor. When we used a single surfactant (carboxylic acid, alcohol, thiol, amine), α-MnS nanocrystals were obtained. The peculiar role of the amine seems to be related to its basicity. The nanocrystals were characterized by TEM and electron diffraction; ATR-FTIR spectroscopy provided information about the surfactants adsorbed on the NCs.
相关化合物
相关文献:
2015-08-01
[Bioelectrochemistry 104 , 51-7, (2015)]
2015-08-15
[Anal. Biochem. 483 , 54-61, (2015)]
2015-10-01
[Nutrition 31 , 1255-9, (2015)]
2015-09-01
[J. Nanosci. Nanotechnol. 15 , 7146-52, (2015)]
2015-07-01
[Nat. Prod. Commun. 10 , 1171-3, (2015)]