High-resolution nanotransfer printing applicable to diverse surfaces via interface-targeted adhesion switching.
Jae Won Jeong, Se Ryeun Yang, Yoon Hyung Hur, Seong Wan Kim, Kwang Min Baek, Soonmin Yim, Hyun-Ik Jang, Jae Hong Park, Seung Yong Lee, Chong-Ook Park, Yeon Sik Jung
文献索引:Nat. Commun. 5 , 5387, (2014)
全文:HTML全文
摘要
Nanotransfer printing technology offers outstanding simplicity and throughput in the fabrication of transistors, metamaterials, epidermal sensors and other emerging devices. Nevertheless, the development of a large-area sub-50 nm nanotransfer printing process has been hindered by fundamental reliability issues in the replication of high-resolution templates and in the release of generated nanostructures. Here we present a solvent-assisted nanotransfer printing technique based on high-fidelity replication of sub-20 nm patterns using a dual-functional bilayer polymer thin film. For uniform and fast release of nanostructures on diverse receiver surfaces, interface-specific adhesion control is realized by employing a polydimethylsiloxane gel pad as a solvent-emitting transfer medium, providing unusual printing capability even on biological surfaces such as human skin and fruit peels. Based on this principle, we also demonstrate reliable printing of high-density metallic nanostructures for non-destructive and rapid surface-enhanced Raman spectroscopy analyses and for hydrogen detection sensors with excellent responsiveness.
相关化合物
相关文献:
2014-01-01
[Retrovirology 11 , 118, (2015)]
2014-01-01
[PLoS ONE 9(9) , e108055, (2014)]
2014-07-07
[Mol. Pharm. 11(7) , 1991-6, (2014)]
2015-02-01
[Cancer Chemother. Pharmacol. 75(2) , 431-7, (2015)]
2015-02-15
[Food Chem. 169 , 28-33, (2014)]