Microbial Cell Factories 2015-01-01

Metabolic pathway engineering using the central signal processor PII.

Björn Watzer, Alicia Engelbrecht, Waldemar Hauf, Mark Stahl, Iris Maldener, Karl Forchhammer

文献索引:Microb. Cell Fact. 14 , 192, (2015)

全文:HTML全文

摘要

PII signal processor proteins are wide spread in prokaryotes and plants where they control a multitude of anabolic reactions. Efficient overproduction of metabolites requires relaxing the tight cellular control circuits. Here we demonstrate that a single point mutation in the PII signaling protein from the cyanobacterium Synechocystis sp. PCC 6803 is sufficient to unlock the arginine pathway causing over accumulation of the biopolymer cyanophycin (multi-L-arginyl-poly-L-aspartate). This product is of biotechnological interest as a source of amino acids and polyaspartic acid. This work exemplifies a novel approach of pathway engineering by designing custom-tailored PII signaling proteins. Here, the engineered Synechocystis sp. PCC6803 strain with a PII-I86N mutation over-accumulated arginine through constitutive activation of the key enzyme N-acetylglutamate kinase (NAGK).In the engineered strain BW86, in vivo NAGK activity was strongly increased and led to a more than tenfold higher arginine content than in the wild-type. As a consequence, strain BW86 accumulated up to 57 % cyanophycin per cell dry mass under the tested conditions, which is the highest yield of cyanophycin reported to date. Strain BW86 produced cyanophycin in a molecular mass range of 25 to >100 kDa; the wild-type produced the polymer in a range of 30 to >100 kDa.The high yield and high molecular mass of cyanophycin produced by strain BW86 along with the low nutrient requirements of cyanobacteria make it a promising means for the biotechnological production of cyanophycin. This study furthermore demonstrates the feasibility of metabolic pathway engineering using the PII signaling protein, which occurs in numerous bacterial species.


相关化合物

  • 氢氧化钠
  • 3-乙基-2,4-戊烷二...
  • 碳酸氢钠
  • Tris乙磺酸

相关文献:

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

Osmoregulatory bicarbonate secretion exploits H(+)-sensitive haemoglobins to autoregulate intestinal O2 delivery in euryhaline teleosts.

2014-10-01

[J. Comp. Physiol. B, Biochem. Syst. Environ. Physiol. 184(7) , 865-76, (2014)]

Polymerization of affinity ligands on a surface for enhanced ligand display and cell binding.

2014-12-08

[Biomacromolecules 15(12) , 4561-9, (2014)]

Continuous syntheses of Pd@Pt and Cu@Ag core-shell nanoparticles using microwave-assisted core particle formation coupled with galvanic metal displacement.

2014-08-07

[Nanoscale 6(15) , 8720-5, (2014)]

Effect of (2)H and (18)O water isotopes in kinesin-1 gliding assay.

2014-01-01

[PeerJ 2 , e284, (2014)]

更多文献...