Journal of Physical Chemistry B 2014-08-21

Factors influencing crystal growth rates from undercooled liquids of pharmaceutical compounds.

Niraj S Trasi, Jared A Baird, Umesh S Kestur, Lynne S Taylor

文献索引:J. Phys. Chem. B 118(33) , 9974-82, (2014)

全文:HTML全文

摘要

Amorphous forms of drugs are increasingly being used to deliver poorly water-soluble compounds. Therefore, understanding the magnitude and origin of differences in crystallization kinetics is highly important. The goal of this study was to better understand the factors that influence crystal growth rates from pharmaceutically relevant undercooled liquids and to evaluate the range of growth rates observed. The crystal growth rates of 31 drugs were determined using an optical microscope in the temperature region between the glass transition temperature (Tg) and the melting temperature (Tm). Thermodynamic parameters such as Tm, melting enthalpy, and Tg were determined using a differential scanning calorimeter (DSC). Selected viscosity values for the undercooled liquid were taken from the literature. The growth rates of the different compounds were found to be very different from each other with a variation of about 5 orders of magnitude between the fastest growing compounds and the slowest growing compounds. A comparison of the physicochemical properties showed that compounds that had fast crystal growth rates had smaller molecular weights, higher melting temperatures, lower melt entropies, lower melt viscosities, and higher crystal densities. Variations in the growth rates of the compounds could be rationalized to a large extent by considering the thermodynamic driving force for crystallization, the viscosity, and the entropy difference between the melt and undercooled liquid. This study therefore provides important insight into factors that may compromise the stability of amorphous pharmaceuticals.


相关化合物

  • 吡罗昔康
  • 对乙酰氨基苯酚
  • 尼美舒利
  • 匹莫齐特
  • 酮洛芬
  • 克霉唑
  • 氯氮平
  • 甲苯磺丁脲
  • 联苯苄唑
  • 杀鼠灵

相关文献:

Evaluation and enhancement of physical stability of semi-solid dispersions containing piroxicam into hard gelatin capsules.

2013-01-01

[Acta Pol. Pharm. 70(5) , 883-97, (2013)]

Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.

2010-01-01

[Chem. Res. Toxicol. 23 , 171-83, (2010)]

Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).

2011-12-01

[J. Sci. Ind. Res. 65(10) , 808, (2006)]

Developing structure-activity relationships for the prediction of hepatotoxicity.

2010-07-19

[Chem. Res. Toxicol. 23 , 1215-22, (2010)]

A predictive ligand-based Bayesian model for human drug-induced liver injury.

2010-12-01

[Drug Metab. Dispos. 38 , 2302-8, (2010)]

更多文献...