Molecular Biology of the Cell 2014-03-01

The fate of the primary cilium during myofibroblast transition.

Matthew Rozycki, Monika Lodyga, Jessica Lam, Maria Zena Miranda, Károly Fátyol, Pam Speight, András Kapus

文献索引:Mol. Biol. Cell 25(5) , 643-57, (2014)

全文:HTML全文

摘要

Myofibroblasts, the culprit of organ fibrosis, can originate from mesenchymal and epithelial precursors through fibroblast-myofibroblast and epithelial-myofibroblast transition (EMyT). Because certain ciliopathies are associated with fibrogenesis, we sought to explore the fate and potential role of the primary cilium during myofibroblast formation. Here we show that myofibroblast transition from either precursor results in the loss of the primary cilium. During EMyT, initial cilium growth is followed by complete deciliation. Both EMyT and cilium loss require two-hit conditions: disassembly/absence of intercellular contacts and transforming growth factor-β1 (TGFβ) exposure. Loss of E-cadherin-dependent junctions induces cilium elongation, whereas both stimuli are needed for deciliation. Accordingly, in a scratch-wounded epithelium, TGFβ provokes cilium loss exclusively along the wound edge. Increased contractility, a key myofibroblast feature, is necessary and sufficient for deciliation, since constitutively active RhoA, Rac1, or myosin triggers, and down-regulation of myosin or myocardin-related transcription factor prevents, this process. Sustained myosin phosphorylation and consequent deciliation are mediated by a Smad3-, Rac1-, and reactive oxygen species-dependent process. Transitioned myofibroblasts exhibit impaired responsiveness to platelet-derived growth factor-AA and sonic hedgehog, two cilium-associated stimuli. Although the cilium is lost during EMyT, its initial presence contributes to the transition. Thus myofibroblasts represent a unique cilium-less entity with profoundly reprogrammed cilium-related signaling.


相关化合物

  • 氯化钠
  • 无水氯化钙
  • 香草乙酮
  • 氯化钠-35cl
  • 二水氯化钙
  • HPI-4 (Ciliobrev...

相关文献:

Salicylic acid signaling controls the maturation and localization of the arabidopsis defense protein ACCELERATED CELL DEATH6.

2014-08-01

[Mol. Plant 7(8) , 1365-83, (2014)]

Mechanism of human PTEN localization revealed by heterologous expression in Dictyostelium.

2014-12-11

[Oncogene 33(50) , 5688-96, (2014)]

Functional consequence of the MET-T1010I polymorphism in breast cancer.

2015-02-20

[Oncotarget 6(5) , 2604-14, (2015)]

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

Melatonin-mediated Bim up-regulation and cyclooxygenase-2 (COX-2) down-regulation enhances tunicamycin-induced apoptosis in MDA-MB-231 cells.

2015-04-01

[J. Pineal Res. 58(3) , 310-20, (2015)]

更多文献...