Photolithographic Synthesis of High-Density DNA and RNA Arrays on Flexible, Transparent, and Easily Subdivided Plastic Substrates.
Matthew T Holden, Matthew C D Carter, Cheng-Hsien Wu, Jamison Wolfer, Eric Codner, Michael R Sussman, David M Lynn, Lloyd M Smith
文献索引:Anal. Chem. 87 , 11420-8, (2015)
全文:HTML全文
摘要
The photolithographic fabrication of high-density DNA and RNA arrays on flexible and transparent plastic substrates is reported. The substrates are thin sheets of poly(ethylene terephthalate) (PET) coated with cross-linked polymer multilayers that present hydroxyl groups suitable for conventional phosphoramidite-based nucleic acid synthesis. We demonstrate that by modifying array synthesis procedures to accommodate the physical and chemical properties of these materials, it is possible to synthesize plastic-backed oligonucleotide arrays with feature sizes as small as 14 μm × 14 μm and feature densities in excess of 125 000/cm(2), similar to specifications attainable using rigid substrates such as glass or glassy carbon. These plastic-backed arrays are tolerant to a wide range of hybridization temperatures, and improved synthetic procedures are described that enable the fabrication of arrays with sequences up to 50 nucleotides in length. These arrays hybridize with S/N ratios comparable to those fabricated on otherwise identical arrays prepared on glass or glassy carbon. This platform supports the enzymatic synthesis of RNA arrays and proof-of-concept experiments are presented showing that the arrays can be readily subdivided into smaller arrays (or "millichips") using common laboratory-scale laser cutting tools. These results expand the utility of oligonucleotide arrays fabricated on plastic substrates and open the door to new applications for these important bioanalytical tools.
相关化合物
相关文献:
2015-04-01
[Angiogenesis 18(2) , 209-17, (2015)]
2015-01-01
[Drug Des. Devel. Ther. 9 , 1555-84, (2015)]
2015-04-17
[J. Biol. Chem. 290(16) , 10000-17, (2015)]
2015-02-17
[Proc. Natl. Acad. Sci. U. S. A. 112(7) , E747-56, (2015)]
2014-07-01
[Nucleic Acids Res. 42(13) , 8635-47, (2014)]