Journal of Experimental Botany 2015-01-01

Physalis floridana Cell Number Regulator1 encodes a cell membrane-anchored modulator of cell cycle and negatively controls fruit size.

Zhichao Li, Chaoying He

文献索引:J. Exp. Bot. 66(1) , 257-70, (2014)

全文:HTML全文

摘要

Physalis species show a significant variation in berry size; however, the underlying molecular basis is unknown. In this work, we showed that cell division difference in the ovaries might contribute to the ultimate berry size variation within Physalis species, and that mRNA abundance of Physalis floridana Cell Number Regulator1 (PfCNR1), the putative orthologue of the tomato fruit weight 2.2 (FW2.2), was negatively correlated with cell division in the ovaries. Moreover, heterochronic expression variation of the PfCNR1 genes in the ovaries concomitantly correlated with berry weight variation within Physalis species. In transgenic Physalis, multiple organ sizes could be negatively controlled by altering PfCNR1 levels, and cell division instead of cell expansion was primarily affected. PfCNR1 was shown to be anchored in the plasma membrane and to interact with PfAG2 (an AGAMOUS-like protein determining ovary identity). The expression of PfCYCD2;1, a putative orthologue of the mitosis-specific gene CyclinD2;1 in the cell cycle was negatively correlated with the PfCNR1 mRNA levels. PfAG2 was found to selectively bind to the CArG-box in the PfCYCD2;1 promoter and to repress PfCYCD2;1 expression, thus suggesting a PfAG2-mediated pathway for PfCNR1 to regulate cell division. The interaction of PfCNR1 with PfAG2 enhanced the repression of PfCYCD2;1 expression. The nuclear import of PfAG2 was essential in the proposed pathway. Our data provide new insights into the developmental pathways of a cell membrane-anchored protein that modulates cell division and governs organ size determination. This study also sheds light on the link between organ identity and organ growth in plants. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.


相关化合物

  • 乙醇
  • Pregabalin-13C3 s...
  • 地黄苷元

相关文献:

Genetic and pharmacologic inhibition of eIF4E reduces breast cancer cell migration, invasion, and metastasis.

2015-03-15

[Cancer Res. 75(6) , 1102-12, (2015)]

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

25-O-acetyl-23,24-dihydro-cucurbitacin F induces cell cycle G2/M arrest and apoptosis in human soft tissue sarcoma cells.

2015-04-22

[J. Ethnopharmacol. 164 , 265-72, (2015)]

Improved ethanol tolerance and ethanol production from glycerol in a streptomycin-resistant Klebsiella variicola mutant obtained by ribosome engineering.

2015-01-01

[Bioresour. Technol. 176 , 156-62, (2014)]

Polymerization of affinity ligands on a surface for enhanced ligand display and cell binding.

2014-12-08

[Biomacromolecules 15(12) , 4561-9, (2014)]

更多文献...