Plant, Cell & Environment 2015-02-01

Functional characterization of the two ferrochelatases in Arabidopsis thaliana.

Michael Scharfenberg, Lukas Mittermayr, Edda VON Roepenack-Lahaye, Hagen Schlicke, Bernhard Grimm, Dario Leister, Tatjana Kleine

文献索引:Plant Cell Environ. 38(2) , 280-98, (2015)

全文:HTML全文

摘要

The enzyme ferrochelatase catalyses the formation of protoheme by inserting Fe(2+) into protoporphyrin IX. Although most organisms express only one ferrochelatase, all land plants analysed so far possess at least two ferrochelatase proteins. Analysis of publicly available expression data suggests that the two Arabidopsis thaliana ferrochelatases, FC1 and FC2, serve different functions, corroborating previous assumptions. Co-expression analysis of FC1 and FC2, together with microarray analyses, implies that fc1 and fc2 trigger different modes of plastid signalling in roots and leaves, respectively, and indicates that FC2 might be involved in stress responses. Thus, loss of FC2 increases resistance to salt and flagellin treatment. Whereas fc1 plants showed no obvious mutant phenotype, fc2 mutants formed abnormally small, pale green rosette leaves; were low in chlorophylls, carotenoids and several photosynthetic proteins; and their photosynthetic performance was impaired. These phenotypes are attenuated by growth in continuous light, in agreement with the finding that fc2 plants accumulate protochlorophyllide and display a fluorescent (flu) phenotype in the dark. In consequence we show that, contrary to earlier suggestions, FC2 produces heme not only for photosynthetic cytochromes, but also for proteins involved in stress responses, whereas the impairment of FC1 apparently interferes only marginally with stress responses. © 2013 John Wiley & Sons Ltd.


相关化合物

  • 乙醇
  • 鲁米诺
  • 氯化血红素
  • 乙腈中氟草敏溶液
  • 原卟啉
  • 放线菌酮

相关文献:

Genetic and pharmacologic inhibition of eIF4E reduces breast cancer cell migration, invasion, and metastasis.

2015-03-15

[Cancer Res. 75(6) , 1102-12, (2015)]

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

25-O-acetyl-23,24-dihydro-cucurbitacin F induces cell cycle G2/M arrest and apoptosis in human soft tissue sarcoma cells.

2015-04-22

[J. Ethnopharmacol. 164 , 265-72, (2015)]

Improved ethanol tolerance and ethanol production from glycerol in a streptomycin-resistant Klebsiella variicola mutant obtained by ribosome engineering.

2015-01-01

[Bioresour. Technol. 176 , 156-62, (2014)]

Polymerization of affinity ligands on a surface for enhanced ligand display and cell binding.

2014-12-08

[Biomacromolecules 15(12) , 4561-9, (2014)]

更多文献...