Journal of Neuroinflammation 2015-01-01

Crosstalk between macrophages and astrocytes affects proliferation, reactive phenotype and inflammatory response, suggesting a role during reactive gliosis following spinal cord injury.

Niels Haan, Bangfu Zhu, Jian Wang, Xiaoqing Wei, Bing Song

文献索引:J. Neuroinflammation 12 , 109, (2015)

全文:HTML全文

摘要

Large-scale macrophage infiltration and reactive astrogliosis are hallmarks of early spinal cord injury (SCI) pathology. The exact nature of the macrophage response and relationship between these phenomena have not been explored in detail. Here, we have investigated these responses using a combination of in vivo SCI models, organotypic and primary cultures.In vivo macrophage response was investigated using a contusive injury mouse model. Interactions between astrocytes and macrophages were studied in primary or organotypic cultures. Proliferation was assessed though MTT assay and nucleotide incorporation and gene expression changes through qPCR.Seven days following contusive SCI, a mixed M1/M2 macrophage response was seen in the injury site. Conditioned medium from primary M1, but not M2, macrophages are able to induce astrocyte proliferation in both organotypic spinal cord cultures and primary astrocytes. Soluble factors from M1 macrophages induce a reactive astrocyte gene expression pattern, whereas M2 factors inhibit expression of these genes. M2-stimulated astrocytes are also able to decrease both M1 and M2 macrophage proliferation and decrease TNFα production in M1 macrophages.These results suggest a strong role of M1 macrophages in inducing reactive astrogliosis and the existence of an astrocyte-mediated negative feedback system in order to dampen the immune response. These results, combined with the poor outcomes of the current immunosuppressive steroid treatments in SCI, indicate the need for more targeted therapies, taking into account the significantly different effects of M1 and M2 macrophages, in order to optimise outcome.


相关化合物

  • 丙酮
  • 甲醇
  • 3,3′,5,5′-四甲基...
  • 可得然胶
  • 氯化铵

相关文献:

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

Polymerization of affinity ligands on a surface for enhanced ligand display and cell binding.

2014-12-08

[Biomacromolecules 15(12) , 4561-9, (2014)]

Synergistic activity of tenofovir and nevirapine combinations released from polycaprolactone matrices for potential enhanced prevention of HIV infection through the vaginal route.

2014-10-01

[Eur. J. Pharm. Biopharm. 88(2) , 406-14, (2014)]

Use of an enzyme-assisted method to improve protein extraction from olive leaves.

2015-02-15

[Food Chem. 169 , 28-33, (2014)]

Molecular insights into shellac film coats from different aqueous shellac salt solutions and effect on disintegration of enteric-coated soft gelatin capsules.

2015-04-30

[Int. J. Pharm. 484(1-2) , 283-91, (2015)]

更多文献...