Critical Reviews in Microbiology 1998-01-01

Biodegradation of the acetanilide herbicides alachlor, metolachlor, and propachlor.

D M Stamper, O H Tuovinen

文献索引:Crit. Rev. Microbiol 24(1) , 1-22, (1998)

全文:HTML全文

摘要

Alachlor, metolachlor, and propachlor are detoxified in biological systems by the formation of glutathione-acetanilide conjugates. This conjugation is mediated by glutathione-S-transferase, which is present in microorganisms, plants, and mammals. Other organic sulfides and inorganic sulfide also react through a nucleophilic attack on the 2-chloro group of acetanilide herbicides, but the products are only partially characterized. Sorption in soils and sediments is an important factor controlling the migration and bioavailability of these herbicides, while microbial degradation is the most important factor in determining their overall fate in the environment. The biodegradation of alachlor and metolachlor is proposed to be only partial and primarily cometabolic, and the ring cleavage seems to be slow or insignificant. Propachlor biodegradation has been reported to proceed to substantial (> 50%) mineralization of the ring structure. Reductive dechlorination may be one of the initial breakdown mechanisms under anaerobic conditions. Aerobic and anaerobic transformation products vary in their polarity and therefore in soil binding coefficient. A catabolic pathway for chloroacetanilide herbicides has not been presented in the literature because of the lack of mineralization data under defined cultural conditions.


相关化合物

  • 毒草胺
  • 异丙甲草胺
  • 甲草胺

相关文献:

Glutathione-dependent cytotoxicity of the chloroacetanilide herbicides alachlor, metolachlor, and propachlor in rat and human hepatoma-derived cultured cells.

1999-01-01

[Cell Biol. Toxicol. 15(5) , 325-32, (1999)]

Kinetics and mechanism of propachlor reductive transformation through nucleophilic substitution by dithionite

2011-01-01

[Chemosphere 85(9) , 1438-43, (2011)]

Characterization of glutathione conjugates of chloroacetanilide pesticides using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry and liquid chromatography/ion trap mass spectrometry.

2007-01-01

[Rapid Commun. Mass Spectrom. 21(24) , 4017-22, (2007)]

Correlation analyses for bimolecular nucleophilic substitution reactions of chloroacetanilide herbicides and their structural analogs with environmentally relevant nucleophiles.

2005-10-01

[Environ. Toxicol. Chem. 24(10) , 2401-9, (2005)]

Comparison of rat olfactory mucosal responses to carcinogenic and non-carcinogenic chloracetanilides.

2009-06-01

[Food Chem. Toxicol. 47(6) , 1051-7, (2009)]

更多文献...