Ecotoxicology and Environmental Safety 2014-10-01

Assessment of the chemical, microbiological and toxicological aspects of post-processing water from underground coal gasification.

Magdalena Pankiewicz-Sperka, Krzysztof Stańczyk, Grażyna A Płaza, Jolanta Kwaśniewska, Grzegorz Nałęcz-Jawecki

文献索引:Ecotoxicol. Environ. Saf. 108 , 294-301, (2014)

全文:HTML全文

摘要

The purpose of this paper is to provide a comprehensive characterisation (including chemical, microbiological and toxicological parameters) of water after the underground coal gasification (UCG) process. This is the first report in which these parameters were analysed together to assess the environmental risk of the water generated during the simulation of the underground coal gasification (UCG) process performed by the Central Mining Institute (Poland). Chemical analysis of the water indicated many hazardous chemical compounds, including benzene, toluene, ethylbenzene, xylene, phenols and polycyclic aromatic hydrocarbons (PAHs). Additionally, large quantities of inorganic compounds from the coal and ashes produced during the volatilisation process were noted. Due to the presence of refractory and inhibitory compounds in the post-processing water samples, the microbiological and toxicological analyses revealed the high toxicity of the UCG post-processing water. Among the tested microorganisms, mesophilic, thermophilic, psychrophilic, spore-forming, anaerobic and S-oxidizing bacteria were identified. However, the number of detected microorganisms was very low. The psychrophilic bacteria dominated among tested bacteria. There were no fungi or Actinomycetes in any of the water samples. Preliminary study revealed that hydrocarbon-oxidizing bacteria were metabolically active in the water samples. The samples were very toxic to the biotests, with the TU50 reaching 262. None of biotests was the most sensitive to all samples. Cytotoxicity and genotoxicity testing of the water samples in Vicia uncovered strong cytotoxic and clastogenic effects. Furthermore, TUNEL indicated that all of the water samples caused sporadic DNA fragmentation in the nuclei of the roots. Copyright © 2014 Elsevier Inc. All rights reserved.


相关化合物

  • 荧光素
  • 马来酰肼

相关文献:

CPEB1 modulates differentiation of glioma stem cells via downregulation of HES1 and SIRT1 expression.

2014-08-30

[Oncotarget 5(16) , 6756-69, (2014)]

Cell-cell adhesions and cell contractility are upregulated upon desmosome disruption.

2014-01-01

[PLoS ONE 9(7) , e101824, (2014)]

Gene therapy with AAV2-CDNF provides functional benefits in a rat model of Parkinson's disease.

2013-03-01

[Brain Behav. 3(2) , 75-88, (2013)]

Positive feedback regulation of type I IFN production by the IFN-inducible DNA sensor cGAS.

2015-02-15

[J. Immunol. 194(4) , 1545-54, (2015)]

Enhanced Retinal Ganglion Cell Survival in Glaucoma by Hypoxic Postconditioning After Disease Onset.

2015-04-01

[Neurotherapeutics 12(2) , 502-14, (2015)]

更多文献...