AMB Express 2015-01-01

Fe(III) mineral reduction followed by partial dissolution and reactive oxygen species generation during 2,4,6-trinitrotoluene transformation by the aerobic yeast Yarrowia lipolytica.

Ayrat M Ziganshin, Elvira E Ziganshina, James Byrne, Robin Gerlach, Ellen Struve, Timur Biktagirov, Alexander Rodionov, Andreas Kappler

文献索引:AMB Express 5 , 8, (2015)

全文:HTML全文

摘要

Understanding the factors that influence pollutant transformation in the presence of ferric (oxyhydr)oxides is crucial to the efficient application of different remediation strategies. In this study we determined the effect of goethite, hematite, magnetite and ferrihydrite on the transformation of 2,4,6-trinitrotoluene (TNT) by Yarrowia lipolytica AN-L15. The presence of ferric (oxyhydr)oxides led to a small decrease in the rate of TNT removal. In all cases, a significant release of NO2 (-) from TNT and further NO2 (-) oxidation to NO3 (-) was observed. A fraction of the released NO2 (-) was abiotically decomposed to NO and NO2, and then NO was likely oxidized abiotically to NO2 by O2. ESR analysis revealed the generation of superoxide in the culture medium; its further protonation at low pH resulted in the formation of hydroperoxyl radical. Presumably, a fraction of NO released during TNT degradation reacted with superoxide and formed peroxynitrite, which was further rearranged to NO3 (-) at the acidic pH values observed in this study. A transformation and reduction of ferric (oxyhydr)oxides followed by partial dissolution (in the range of 7-86% of the initial Fe(III)) were observed in the presence of cells and TNT. Mössbauer spectroscopy showed some minor changes for goethite, magnetite and ferrihydrite samples during their incubation with Y. lipolytica and TNT. This study shows that i) reactive oxygen and nitrogen species generated during TNT transformation by Y. lipolytica participate in the abiotic conversion of TNT and ii) the presence of iron(III) minerals leads to a minor decrease in TNT transformation.


相关化合物

  • 次黄嘌呤
  • 纳米四氧化三铁
  • 黄嘌呤
  • 4-氨基-2,6-二硝基...
  • 2-甲基-3,5-二硝基...
  • 水合氧化铁(III)
  • 2,4-二硝基甲苯标准...

相关文献:

Hypoxanthine uptake by skeletal muscle microvascular endothelial cells from equilibrative nucleoside transporter 1 (ENT1)-null mice: effect of oxidative stress.

2015-03-01

[Microvasc. Res. 98 , 16-22, (2015)]

In Vitro Protective Effect and Antioxidant Mechanism of Resveratrol Induced by Dapsone Hydroxylamine in Human Cells.

2015-01-01

[PLoS ONE 10 , e0134768, (2015)]

Oxidative stress modulates nucleobase transport in microvascular endothelial cells

2012-01-01

[Microvasc. Res. 95 , 68-75, (2014)]

Novel Antibodies Reactive with Sialyl Lewis X in Both Humans and Mice Define Its Critical Role in Leukocyte Trafficking and Contact Hypersensitivity Responses.

2015-06-12

[J. Biol. Chem. 290 , 15313-26, (2015)]

Generation of potent mouse monoclonal antibodies to self-proteins using T-cell epitope "tags".

2015-01-01

[MAbs 7(1) , 129-37, (2015)]

更多文献...