Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants and Agricultural Wastes 2008-02-01

Abiotic degradation (photodegradation and hydrolysis) of imidazolinone herbicides.

Mohammadkazem Ramezani, Danielle P Oliver, Rai S Kookana, Gurjeet Gill, Christopher Preston

文献索引:J. Environ. Sci. Health B 43(2) , 105-12, (2008)

全文:HTML全文

摘要

The abiotic degradation of the imidazolinone herbicides imazapyr, imazethapyr and imazaquin was investigated under controlled conditions. Hydrolysis, where it occurred, and photodegradation both followed first-order kinetics for all herbicides. There was no hydrolysis of any of the herbicides in buffer solutions at pH 3 or pH 7; however, slow hydrolysis occurred at pH 9. Estimated half-lives for the three herbicides in solution in the dark were 6.5, 9.2 and 9.6 months for imazaquin, imazethapyr and imazapyr, respectively. Degradation of the herbicides in the light was considerably more rapid than in the dark with half lives for the three herbicides of 1.8, 9.8 and 9.1 days for imazaquin, imazethapyr and imazapyr, respectively. The presence of humic acids in the solution reduced the rate of photodegradation for all three herbicides, with higher concentrations of humic acids generally having greater effect. Photodegradation of imazethapyr was the least sensitive to humic acids. The enantioselectivity of photodegradation was investigated using imazaquin, with photodegradation occurring at the same rate for both enantiomers. Abiotic degradation of imidazolinone herbicides on the soil surface only occurred in the presence of light. The rate of degradation for all herbicides was slower than in solution, with half-lives of 15.3, 24.6 and 30.9 days for imazaquin, imazethapyr and imazapyr, respectively. Abiotic degradation of these herbicides is likely to be slow in the environment and is only likely to occur in clear water or on the soil surface.


相关化合物

  • 咪草烟
  • 灭草烟
  • 灭草喹

相关文献:

Enantioselective phytotoxicity of the herbicide imazethapyr and its effect on rice physiology and gene transcription.

2011-08-15

[Environ. Sci. Technol. 45(16) , 7036-43, (2011)]

Molecular mechanism of enantioselective inhibition of acetolactate synthase by imazethapyr enantiomers.

2010-04-14

[J. Agric. Food Chem. 58(7) , 4202-6, (2010)]

Enantioselective phytotoxicity of the herbicide imazethapyr on the response of the antioxidant system and starch metabolism in Arabidopsis thaliana.

2011-01-01

[PLoS ONE 6(5) , e19451, (2011)]

Photodegradation of the herbicide imazethapyr in aqueous solution: effects of wavelength, pH, and natural organic matter (NOM) and analysis of photoproducts.

2011-07-13

[J. Agric. Food Chem. 59(13) , 7277-85, (2011)]

Unraveling the role of fermentation in the mode of action of acetolactate synthase inhibitors by metabolic profiling.

2011-09-01

[J. Plant Physiol. 168(13) , 1568-75, (2011)]

更多文献...