Breast Cancer Research (Online Edition) 2014-01-01

Mitochondrial dysfunction in some triple-negative breast cancer cell lines: role of mTOR pathway and therapeutic potential.

Hélène Pelicano, Wan Zhang, Jinyun Liu, Naima Hammoudi, Jiale Dai, Rui-Hua Xu, Lajos Pusztai, Peng Huang

文献索引:Breast Cancer Res. 16(5) , 434, (2015)

全文:HTML全文

摘要

Triple-negative breast cancer (TNBC) is a subtype of highly malignant breast cancer with poor prognosis. TNBC is not amenable to endocrine therapy and often exhibit resistance to current chemotherapeutic agents, therefore, further understanding of the biological properties of these cancer cells and development of effective therapeutic approaches are urgently needed.We first investigated the metabolic alterations in TNBC cells in comparison with other subtypes of breast cancer cells using molecular and metabolic analyses. We further demonstrated that targeting these alterations using specific inhibitors and siRNA approach could render TNBC cells more sensitive to cell death compared to other breast cancer subtypes.We found that TNBC cells compared to estrogen receptor (ER) positive cells possess special metabolic characteristics manifested by high glucose uptake, increased lactate production, and low mitochondrial respiration which is correlated with attenuation of mTOR pathway and decreased expression of p70S6K. Re-expression of p70S6K in TNBC cells reverses their glycolytic phenotype to an active oxidative phosphorylation (OXPHOS) state, while knockdown of p70S6K in ER positive cells leads to suppression of mitochondrial OXPHOS. Furthermore, lower OXPHOS activity in TNBC cells renders them highly dependent on glycolysis and the inhibition of glycolysis is highly effective in targeting TNBC cells despite their resistance to other anticancer agents.Our study shows that TNBC cells have profound metabolic alterations characterized by decreased mitochondrial respiration and increased glycolysis. Due to their impaired mitochondrial function, TNBC cells are highly sensitive to glycolytic inhibition, suggesting that such metabolic intervention may be an effective therapeutic strategy for this subtype of breast cancer cells.


相关化合物

  • 琥珀酸; 丁二酸
  • 辅酶I
  • N,N,N',N'-四甲基...
  • 谷胱甘肽/5-L-谷氨...
  • 鱼藤酮
  • 毛地黄皂苷
  • β-烟酰胺腺嘌呤二核...
  • Β-菸鹼醯胺腺嘌呤二...
  • N,N,N',N'-四甲基...

相关文献:

Urinary metabolic fingerprinting of mice with diet-induced metabolic derangements by parallel dual secondary column-dual detection two-dimensional comprehensive gas chromatography.

2014-09-26

[J. Chromatogr. A. 1361 , 265-76, (2014)]

Direct silylation of Trypanosoma brucei metabolites in aqueous samples and their GC-MS/MS analysis.

2014-09-15

[J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 967 , 134-8, (2014)]

Lactic acid production from acidogenic fermentation of fruit and vegetable wastes.

2015-09-01

[Bioresour. Technol. 191 , 53-8, (2015)]

MCL-1-independent mechanisms of synergy between dual PI3K/mTOR and BCL-2 inhibition in diffuse large B cell lymphoma.

2015-11-03

[Oncotarget 6 , 35202-17, (2015)]

Synthesis of folate- pegylated polyester nanoparticles encapsulating ixabepilone for targeting folate receptor overexpressing breast cancer cells.

2015-12-01

[J. Mater. Sci. Mater. Med. 26 , 275, (2015)]

更多文献...