PLoS ONE 2015-01-01

Corosolic Acid Inhibits Hepatocellular Carcinoma Cell Migration by Targeting the VEGFR2/Src/FAK Pathway.

Chung-Yu Ku, Ying-Ren Wang, Hsuan-Yuan Lin, Shao-Chun Lu, Jung-Yaw Lin

文献索引:PLoS ONE 10 , e0126725, (2015)

全文:HTML全文

摘要

Inhibition of VEGFR2 activity has been proposed as an important strategy for the clinical treatment of hepatocellular carcinoma (HCC). In this study, we identified corosolic acid (CA), which exists in the root of Actinidia chinensis, as having a significant anti-cancer effect on HCC cells. We found that CA inhibits VEGFR2 kinase activity by directly interacting with the ATP binding pocket. CA down-regulates the VEGFR2/Src/FAK/cdc42 axis, subsequently decreasing F-actin formation and migratory activity in vitro. In an in vivo model, CA exhibited an effective dose (5 mg/kg/day) on tumor growth. We further demonstrate that CA has a synergistic effect with sorafenib within a wide range of concentrations. In conclusion, this research elucidates the effects and molecular mechanism for CA on HCC cells and suggests that CA could be a therapeutic or adjuvant strategy for patients with aggressive HCC.


相关化合物

  • 二甲基亚砜
  • 熊果酸
  • L-谷氨酰胺
  • 科罗索酸
  • 噻唑兰
  • 8-辛酰氧基芘-1,3,6...

相关文献:

The investigational Aurora kinase A inhibitor alisertib (MLN8237) induces cell cycle G2/M arrest, apoptosis, and autophagy via p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells.

2015-01-01

[Drug Des. Devel. Ther. 9 , 1627-52, (2015)]

Activation of Tomato Bushy Stunt Virus RNA-Dependent RNA Polymerase by Cellular Heat Shock Protein 70 Is Enhanced by Phospholipids In Vitro.

2015-05-01

[J. Virol. 89(10) , 5714-23, (2015)]

Caveolin-1 deficiency induces a MEK-ERK1/2-Snail-1-dependent epithelial-mesenchymal transition and fibrosis during peritoneal dialysis.

2015-01-01

[EMBO Mol. Med. 7(1) , 102-23, (2015)]

Inducible, tightly regulated and growth condition-independent transcription factor in Saccharomyces cerevisiae.

2014-01-01

[Nucleic Acids Res. 42(17) , e130, (2014)]

Co-ordinated brain and craniofacial development depend upon Patched1/XIAP regulation of cell survival.

2015-02-01

[Hum. Mol. Genet. 24(3) , 698-713, (2015)]

更多文献...